Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98628
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorDeng, Wen_US
dc.creatorLi, Ben_US
dc.creatorTian, Wen_US
dc.creatorZhang, Pen_US
dc.date.accessioned2023-05-10T02:00:45Z-
dc.date.available2023-05-10T02:00:45Z-
dc.identifier.issn1540-3459en_US
dc.identifier.urihttp://hdl.handle.net/10397/98628-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2018 Society for Industrial and Applied Mathematicsen_US
dc.rightsThe following publication Deng, W., Li, B., Tian, W., & Zhang, P. (2018). Boundary problems for the fractional and tempered fractional operators. Multiscale Modeling & Simulation, 16(1), 125-149 is available at https://doi.org/10.1137/17M1116222.en_US
dc.subjectLévy flighten_US
dc.subjectTempered Lévy flighten_US
dc.subjectWell-posednessen_US
dc.subjectGeneralized boundary conditionsen_US
dc.titleBoundary problems for the fractional and tempered fractional operatorsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage125en_US
dc.identifier.epage149en_US
dc.identifier.volume16en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1137/17M1116222en_US
dcterms.abstractTo characterize the Brownian motion in a bounded domain Ω, it is well known that the boundary conditions of the classical diffusion equation just rely on the given information of the solution along the boundary of a domain; in contrast, for the Lévy flights or tempered Lévy flights in a bounded domain, the boundary conditions involve the information of a solution in the complementary set of Ω, i.e., Rn\Ω, with the potential reason that paths of the corresponding stochastic process are discontinuous. Guided by probability intuitions and the stochastic perspectives of anomalous diffusion, we show the reasonable ways, ensuring the clear physical meaning and well-posedness of the partial differential equations (PDEs), of specifying “boundary” conditions for space fractional PDEs modeling the anomalous diffusion. Some properties of the operators are discussed, and the well-posednesses of the PDEs with generalized boundary conditions are proved.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMultiscale modeling & simulation, 2018, v. 16, no. 1, p. 125-149en_US
dcterms.isPartOfMultiscale modeling & simulationen_US
dcterms.issued2018-
dc.identifier.scopus2-s2.0-85045076380-
dc.identifier.eissn1540-3467en_US
dc.description.validate202305 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberAMA-0424-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6832399-
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
17m1116222.pdf447.57 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

115
Citations as of Nov 10, 2025

Downloads

44
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

106
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

99
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.