Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98627
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorLi, Ben_US
dc.creatorZhang, Jen_US
dc.creatorZheng, Cen_US
dc.date.accessioned2023-05-10T02:00:45Z-
dc.date.available2023-05-10T02:00:45Z-
dc.identifier.issn0036-1429en_US
dc.identifier.urihttp://hdl.handle.net/10397/98627-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2018 Society for Industrial and Applied Mathematicsen_US
dc.rightsThe following publication Li, B., Zhang, J., & Zheng, C. (2018). An efficient second-order finite difference method for the one-dimensional Schrödinger equation with absorbing boundary conditions. SIAM Journal on Numerical Analysis, 56(2), 766-791 is available at https://doi.org/10.1137/17M1122347.en_US
dc.subjectSchr̈odinger equationen_US
dc.subjectAbsorbing boundary conditionen_US
dc.subjectConvolution quadratureen_US
dc.subjectPadé approximationen_US
dc.subjectFast algorithmen_US
dc.subjectError estimateen_US
dc.titleAn efficient second-order finite difference method for the one-dimensional Schrödinger equation with absorbing boundary conditionsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage766en_US
dc.identifier.epage791en_US
dc.identifier.volume56en_US
dc.identifier.issue2en_US
dc.identifier.doi10.1137/17M1122347en_US
dcterms.abstractA stable and convergent second-order fully discrete finite difference scheme with efficient approximation of the exact absorbing boundary conditions is proposed to solve the Cauchy problem of the one-dimensional Schrödinger equation. Our approximation is based on the Padé expansion of the square root function in the complex plane. By introducing a constant damping term to the governing equation and modifying the standard Crank--Nicolson implicit scheme, we show that the fully discrete numerical scheme is unconditionally stable if the order of Padé expansion is chosen from our criterion. In this case, an optimal-order asymptotic error estimate is proved for the numerical solutions. Numerical examples are provided to support the theoretical analysis and illustrate the performance of the proposed numerical scheme.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on numerical analysis, 2018, v. 56, no. 2, p. 766-791en_US
dcterms.isPartOfSIAM journal on numerical analysisen_US
dcterms.issued2018-
dc.identifier.scopus2-s2.0-85046759062-
dc.identifier.eissn1095-7170en_US
dc.description.validate202305 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberAMA-0417-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6838721-
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
17m1122347.pdf2.73 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

120
Citations as of Nov 10, 2025

Downloads

167
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

22
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

21
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.