Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/98627
| DC Field | Value | Language |
|---|---|---|
| dc.contributor | Department of Applied Mathematics | en_US |
| dc.creator | Li, B | en_US |
| dc.creator | Zhang, J | en_US |
| dc.creator | Zheng, C | en_US |
| dc.date.accessioned | 2023-05-10T02:00:45Z | - |
| dc.date.available | 2023-05-10T02:00:45Z | - |
| dc.identifier.issn | 0036-1429 | en_US |
| dc.identifier.uri | http://hdl.handle.net/10397/98627 | - |
| dc.language.iso | en | en_US |
| dc.publisher | Society for Industrial and Applied Mathematics | en_US |
| dc.rights | © 2018 Society for Industrial and Applied Mathematics | en_US |
| dc.rights | The following publication Li, B., Zhang, J., & Zheng, C. (2018). An efficient second-order finite difference method for the one-dimensional Schrödinger equation with absorbing boundary conditions. SIAM Journal on Numerical Analysis, 56(2), 766-791 is available at https://doi.org/10.1137/17M1122347. | en_US |
| dc.subject | Schr̈odinger equation | en_US |
| dc.subject | Absorbing boundary condition | en_US |
| dc.subject | Convolution quadrature | en_US |
| dc.subject | Padé approximation | en_US |
| dc.subject | Fast algorithm | en_US |
| dc.subject | Error estimate | en_US |
| dc.title | An efficient second-order finite difference method for the one-dimensional Schrödinger equation with absorbing boundary conditions | en_US |
| dc.type | Journal/Magazine Article | en_US |
| dc.identifier.spage | 766 | en_US |
| dc.identifier.epage | 791 | en_US |
| dc.identifier.volume | 56 | en_US |
| dc.identifier.issue | 2 | en_US |
| dc.identifier.doi | 10.1137/17M1122347 | en_US |
| dcterms.abstract | A stable and convergent second-order fully discrete finite difference scheme with efficient approximation of the exact absorbing boundary conditions is proposed to solve the Cauchy problem of the one-dimensional Schrödinger equation. Our approximation is based on the Padé expansion of the square root function in the complex plane. By introducing a constant damping term to the governing equation and modifying the standard Crank--Nicolson implicit scheme, we show that the fully discrete numerical scheme is unconditionally stable if the order of Padé expansion is chosen from our criterion. In this case, an optimal-order asymptotic error estimate is proved for the numerical solutions. Numerical examples are provided to support the theoretical analysis and illustrate the performance of the proposed numerical scheme. | en_US |
| dcterms.accessRights | open access | en_US |
| dcterms.bibliographicCitation | SIAM journal on numerical analysis, 2018, v. 56, no. 2, p. 766-791 | en_US |
| dcterms.isPartOf | SIAM journal on numerical analysis | en_US |
| dcterms.issued | 2018 | - |
| dc.identifier.scopus | 2-s2.0-85046759062 | - |
| dc.identifier.eissn | 1095-7170 | en_US |
| dc.description.validate | 202305 bcch | en_US |
| dc.description.oa | Version of Record | en_US |
| dc.identifier.FolderNumber | AMA-0417 | - |
| dc.description.fundingSource | RGC | en_US |
| dc.description.pubStatus | Published | en_US |
| dc.identifier.OPUS | 6838721 | - |
| dc.description.oaCategory | VoR allowed | en_US |
| Appears in Collections: | Journal/Magazine Article | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 17m1122347.pdf | 2.73 MB | Adobe PDF | View/Open |
Page views
120
Citations as of Nov 10, 2025
Downloads
167
Citations as of Nov 10, 2025
SCOPUSTM
Citations
22
Citations as of Dec 19, 2025
WEB OF SCIENCETM
Citations
21
Citations as of Dec 18, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



