Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/98625
| DC Field | Value | Language |
|---|---|---|
| dc.contributor | Department of Applied Mathematics | en_US |
| dc.creator | Jin, B | en_US |
| dc.creator | Li, B | en_US |
| dc.creator | Zhou, Z | en_US |
| dc.date.accessioned | 2023-05-10T02:00:44Z | - |
| dc.date.available | 2023-05-10T02:00:44Z | - |
| dc.identifier.issn | 0036-1429 | en_US |
| dc.identifier.uri | http://hdl.handle.net/10397/98625 | - |
| dc.language.iso | en | en_US |
| dc.publisher | Society for Industrial and Applied Mathematics | en_US |
| dc.rights | © 2018 Society for Industrial and Applied Mathematics | en_US |
| dc.rights | The following publication Jin, B., Li, B., & Zhou, Z. (2018). Numerical analysis of nonlinear subdiffusion equations. SIAM Journal on Numerical Analysis, 56(1), 1-23 is available at https://doi.org/10.1137/16M1089320. | en_US |
| dc.subject | Nonlinear fractional diffusion equation | en_US |
| dc.subject | Discrete fractional Grönwall inequality | en_US |
| dc.subject | L1 scheme | en_US |
| dc.subject | Convolution quadrature | en_US |
| dc.subject | Error estimate | en_US |
| dc.title | Numerical analysis of nonlinear subdiffusion equations | en_US |
| dc.type | Journal/Magazine Article | en_US |
| dc.identifier.spage | 1 | en_US |
| dc.identifier.epage | 23 | en_US |
| dc.identifier.volume | 56 | en_US |
| dc.identifier.issue | 1 | en_US |
| dc.identifier.doi | 10.1137/16M1089320 | en_US |
| dcterms.abstract | We present a general framework for the rigorous numerical analysis of time-fractional nonlinear parabolic partial differential equations, with a fractional derivative of order α ∈ (0, 1) in time. It relies on three technical tools: a fractional version of the discrete Grönwall type inequality, discrete maximal regularity, and regularity theory of nonlinear equations. We establish a general criterion for showing the fractional discrete Grönwall inequality and verify it for the L1 scheme and convolution quadrature generated by backward difference formulas. Further, we provide a complete solution theory, e.g., existence, uniqueness, and regularity, for a time-fractional diffusion equation with a Lipschitz nonlinear source term. Together with the known results of discrete maximal regularity, we derive pointwise L2(Ω) norm error estimates for semidiscrete Galerkin finite element solutions and fully discrete solutions, which are of order O(h2) (up to a logarithmic factor) and O(τα), respectively, without any extra regularity assumption on the solution or compatibility condition on the problem data. The sharpness of the convergence rates is supported by the numerical experiments. | en_US |
| dcterms.accessRights | open access | en_US |
| dcterms.bibliographicCitation | SIAM journal on numerical analysis, 2018, v. 56, no. 1, p. 1-23 | en_US |
| dcterms.isPartOf | SIAM journal on numerical analysis | en_US |
| dcterms.issued | 2018 | - |
| dc.identifier.scopus | 2-s2.0-85043458941 | - |
| dc.identifier.eissn | 1095-7170 | en_US |
| dc.description.validate | 202305 bcch | en_US |
| dc.description.oa | Version of Record | en_US |
| dc.identifier.FolderNumber | AMA-0413 | - |
| dc.description.fundingSource | RGC | en_US |
| dc.description.pubStatus | Published | en_US |
| dc.identifier.OPUS | 22970277 | - |
| dc.description.oaCategory | VoR allowed | en_US |
| Appears in Collections: | Journal/Magazine Article | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 16m1089320.pdf | 311.08 kB | Adobe PDF | View/Open |
Page views
131
Citations as of Nov 10, 2025
Downloads
128
Citations as of Nov 10, 2025
SCOPUSTM
Citations
218
Citations as of Dec 19, 2025
WEB OF SCIENCETM
Citations
211
Citations as of Dec 18, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



