Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98625
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorJin, Ben_US
dc.creatorLi, Ben_US
dc.creatorZhou, Zen_US
dc.date.accessioned2023-05-10T02:00:44Z-
dc.date.available2023-05-10T02:00:44Z-
dc.identifier.issn0036-1429en_US
dc.identifier.urihttp://hdl.handle.net/10397/98625-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2018 Society for Industrial and Applied Mathematicsen_US
dc.rightsThe following publication Jin, B., Li, B., & Zhou, Z. (2018). Numerical analysis of nonlinear subdiffusion equations. SIAM Journal on Numerical Analysis, 56(1), 1-23 is available at https://doi.org/10.1137/16M1089320.en_US
dc.subjectNonlinear fractional diffusion equationen_US
dc.subjectDiscrete fractional Grönwall inequalityen_US
dc.subjectL1 schemeen_US
dc.subjectConvolution quadratureen_US
dc.subjectError estimateen_US
dc.titleNumerical analysis of nonlinear subdiffusion equationsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1en_US
dc.identifier.epage23en_US
dc.identifier.volume56en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1137/16M1089320en_US
dcterms.abstractWe present a general framework for the rigorous numerical analysis of time-fractional nonlinear parabolic partial differential equations, with a fractional derivative of order α ∈ (0, 1) in time. It relies on three technical tools: a fractional version of the discrete Grönwall type inequality, discrete maximal regularity, and regularity theory of nonlinear equations. We establish a general criterion for showing the fractional discrete Grönwall inequality and verify it for the L1 scheme and convolution quadrature generated by backward difference formulas. Further, we provide a complete solution theory, e.g., existence, uniqueness, and regularity, for a time-fractional diffusion equation with a Lipschitz nonlinear source term. Together with the known results of discrete maximal regularity, we derive pointwise L2(Ω) norm error estimates for semidiscrete Galerkin finite element solutions and fully discrete solutions, which are of order O(h2) (up to a logarithmic factor) and O(τα), respectively, without any extra regularity assumption on the solution or compatibility condition on the problem data. The sharpness of the convergence rates is supported by the numerical experiments.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on numerical analysis, 2018, v. 56, no. 1, p. 1-23en_US
dcterms.isPartOfSIAM journal on numerical analysisen_US
dcterms.issued2018-
dc.identifier.scopus2-s2.0-85043458941-
dc.identifier.eissn1095-7170en_US
dc.description.validate202305 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberAMA-0413-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS22970277-
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
16m1089320.pdf311.08 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

131
Citations as of Nov 10, 2025

Downloads

128
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

218
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

211
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.