Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98620
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorWang, Hen_US
dc.creatorLiu, Xen_US
dc.creatorChen, Xen_US
dc.creatorYuan, Yen_US
dc.date.accessioned2023-05-10T02:00:42Z-
dc.date.available2023-05-10T02:00:42Z-
dc.identifier.issn0254-9409en_US
dc.identifier.urihttp://hdl.handle.net/10397/98620-
dc.language.isoenen_US
dc.publisherGlobal Science Pressen_US
dc.rights© Global Science Pressen_US
dc.rightsThis is the accepted version of the following article: Wang, H., Liu, X., Chen, X., & Yuan, Y. (2018). Snig property of matrix low-rank factorization model. Journal of Computational Mathematics, 36(3), 374-390, which has been published in https://doi.org/10.4208/jcm.1707-m2016-0796.en_US
dc.subjectLow rank factorizationen_US
dc.subjectNonconvex optimizationen_US
dc.subjectSecond-order optimality conditionen_US
dc.subjectGlobal minimizeren_US
dc.titleSNIG property of matrix low-rank factorization modelen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage374en_US
dc.identifier.epage390en_US
dc.identifier.volume36en_US
dc.identifier.issue3en_US
dc.identifier.doi10.4208/jcm.1707-m2016-0796en_US
dcterms.abstractRecently, the matrix factorization model attracts increasing attentions in handling large-scale rank minimization problems, which is essentially a nonconvex minimization problem. Specifically, it is a quadratic least squares problem and consequently a quartic polynomial optimization problem. In this paper, we introduce a concept of the SNIG ("Second-order Necessary optimality Implies Global optimality") condition which stands for the property that any second-order stationary point of the matrix factorization model must be a global minimizer. Some scenarios under which the SNIG condition holds are presented. Furthermore, we illustrate by an example when the SNIG condition may fail.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of computational mathematics, 2019, v. 36, no. 3, p. 374-390en_US
dcterms.isPartOfJournal of computational mathematicsen_US
dcterms.issued2019-
dc.identifier.scopus2-s2.0-85072280999-
dc.identifier.eissn1991-7139en_US
dc.description.validate202305 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAMA-0392-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS27015652-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Wang_Snig_Property_Matrix.pdfPre-Published version831.22 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

67
Citations as of Apr 14, 2025

Downloads

109
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

1
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.