Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/98620
| DC Field | Value | Language |
|---|---|---|
| dc.contributor | Department of Applied Mathematics | en_US |
| dc.creator | Wang, H | en_US |
| dc.creator | Liu, X | en_US |
| dc.creator | Chen, X | en_US |
| dc.creator | Yuan, Y | en_US |
| dc.date.accessioned | 2023-05-10T02:00:42Z | - |
| dc.date.available | 2023-05-10T02:00:42Z | - |
| dc.identifier.issn | 0254-9409 | en_US |
| dc.identifier.uri | http://hdl.handle.net/10397/98620 | - |
| dc.language.iso | en | en_US |
| dc.publisher | Global Science Press | en_US |
| dc.rights | © Global Science Press | en_US |
| dc.rights | This is the accepted version of the following article: Wang, H., Liu, X., Chen, X., & Yuan, Y. (2018). Snig property of matrix low-rank factorization model. Journal of Computational Mathematics, 36(3), 374-390, which has been published in https://doi.org/10.4208/jcm.1707-m2016-0796. | en_US |
| dc.subject | Low rank factorization | en_US |
| dc.subject | Nonconvex optimization | en_US |
| dc.subject | Second-order optimality condition | en_US |
| dc.subject | Global minimizer | en_US |
| dc.title | SNIG property of matrix low-rank factorization model | en_US |
| dc.type | Journal/Magazine Article | en_US |
| dc.identifier.spage | 374 | en_US |
| dc.identifier.epage | 390 | en_US |
| dc.identifier.volume | 36 | en_US |
| dc.identifier.issue | 3 | en_US |
| dc.identifier.doi | 10.4208/jcm.1707-m2016-0796 | en_US |
| dcterms.abstract | Recently, the matrix factorization model attracts increasing attentions in handling large-scale rank minimization problems, which is essentially a nonconvex minimization problem. Specifically, it is a quadratic least squares problem and consequently a quartic polynomial optimization problem. In this paper, we introduce a concept of the SNIG ("Second-order Necessary optimality Implies Global optimality") condition which stands for the property that any second-order stationary point of the matrix factorization model must be a global minimizer. Some scenarios under which the SNIG condition holds are presented. Furthermore, we illustrate by an example when the SNIG condition may fail. | en_US |
| dcterms.accessRights | open access | en_US |
| dcterms.bibliographicCitation | Journal of computational mathematics, 2019, v. 36, no. 3, p. 374-390 | en_US |
| dcterms.isPartOf | Journal of computational mathematics | en_US |
| dcterms.issued | 2019 | - |
| dc.identifier.scopus | 2-s2.0-85072280999 | - |
| dc.identifier.eissn | 1991-7139 | en_US |
| dc.description.validate | 202305 bcch | en_US |
| dc.description.oa | Accepted Manuscript | en_US |
| dc.identifier.FolderNumber | AMA-0392 | - |
| dc.description.fundingSource | RGC | en_US |
| dc.description.pubStatus | Published | en_US |
| dc.identifier.OPUS | 27015652 | - |
| dc.description.oaCategory | Green (AAM) | en_US |
| Appears in Collections: | Journal/Magazine Article | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Wang_Snig_Property_Matrix.pdf | Pre-Published version | 831.22 kB | Adobe PDF | View/Open |
Page views
67
Citations as of Apr 14, 2025
Downloads
109
Citations as of Apr 14, 2025
SCOPUSTM
Citations
1
Citations as of Dec 19, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



