Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98619
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorCui, Yen_US
dc.creatorSun, Den_US
dc.date.accessioned2023-05-10T02:00:42Z-
dc.date.available2023-05-10T02:00:42Z-
dc.identifier.issn0254-9409en_US
dc.identifier.urihttp://hdl.handle.net/10397/98619-
dc.language.isoenen_US
dc.publisherGlobal Science Pressen_US
dc.rights© Global Science Pressen_US
dc.rightsThis is the accepted version of the following article: Ying Cui & Defeng Sun. (2020). A Complete Characterization of the Robust Isolated Calmness of Nuclear Norm Regularized Convex Optimization Problems. Journal of Computational Mathematics, 36(3), 441-458, which has been published in https://doi.org/10.4208/jcm.1709-m2017-0034.en_US
dc.subjectRobust isolated calmnessen_US
dc.subjectNuclear normen_US
dc.subjectSecond order sufficient conditionen_US
dc.subjectStrict Robinson constraint qualificationen_US
dc.titleA complete characterization of the robust isolated calmness of nuclear norm regularized convex optimization problemsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage441en_US
dc.identifier.epage458en_US
dc.identifier.volume36en_US
dc.identifier.issue3en_US
dc.identifier.doi10.4208/jcm.1709-m2017-0034en_US
dcterms.abstractIn this paper, we provide a complete characterization of the robust isolated calmness of the Karush-Kuhn-Tucker (KKT) solution mapping for convex constrained optimization problems regularized by the nuclear norm function. This study is motivated by the recent work in [8], where the authors show that under the Robinson constraint qualification at a local optimal solution, the KKT solution mapping for a wide class of conic programming problems is robustly isolated calm if and only if both the second order sufficient condition (SOSC) and the strict Robinson constraint qualification (SRCQ) are satisfied. Based on the variational properties of the nuclear norm function and its conjugate, we establish the equivalence between the primal/dual SOSC and the dual/primal SRCQ. The derived results lead to several equivalent characterizations of the robust isolated calmness of the KKT solution mapping and add insights to the existing literature on the stability of nuclear norm regularized convex optimization problems.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of computational mathematics, 2019, v. 36, no. 3, p. 441-458en_US
dcterms.isPartOfJournal of computational mathematicsen_US
dcterms.issued2019-
dc.identifier.scopus2-s2.0-85072290923-
dc.identifier.eissn1991-7139en_US
dc.description.validate202305 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAMA-0391-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextSingapore Ministry of Educationen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS20280097-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Sun_Complete_Characterization_Robust.pdfPre-Published version882.87 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

76
Citations as of Apr 14, 2025

Downloads

46
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

5
Citations as of Sep 12, 2025

WEB OF SCIENCETM
Citations

1
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.