Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98618
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorChen, Xen_US
dc.creatorSun, Hen_US
dc.creatorXu, Hen_US
dc.date.accessioned2023-05-10T02:00:42Z-
dc.date.available2023-05-10T02:00:42Z-
dc.identifier.issn0025-5610en_US
dc.identifier.urihttp://hdl.handle.net/10397/98618-
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rights© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2018en_US
dc.rightsThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use (https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s10107-018-1266-4.en_US
dc.subjectTwo-stage stochastic linear complementarity problemen_US
dc.subjectDiscreteapproximationen_US
dc.subjectError bounden_US
dc.subjectDistributionally robust linear complementarity problemen_US
dc.subjectEx post equilibriumen_US
dc.titleDiscrete approximation of two-stage stochastic and distributionally robust linear complementarity problemsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage255en_US
dc.identifier.epage289en_US
dc.identifier.volume177en_US
dc.identifier.issue1-2en_US
dc.identifier.doi10.1007/s10107-018-1266-4en_US
dcterms.abstractIn this paper, we propose a discretization scheme for the two-stage stochastic linear complementarity problem (LCP) where the underlying random data are continuously distributed. Under some moderate conditions, we derive qualitative and quantitative convergence for the solutions obtained from solving the discretized two-stage stochastic LCP (SLCP). We explain how the discretized two-stage SLCP may be solved by the well-known progressive hedging method (PHM). Moreover, we extend the discussion by considering a two-stage distributionally robust LCP (DRLCP) with moment constraints and proposing a discretization scheme for the DRLCP. As an application, we show how the SLCP and DRLCP models can be used to study equilibrium arising from two-stage duopoly game where each player plans to set up its optimal capacity at present with anticipated competition for production in future.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMathematical programming, Sept 2019, v. 177, no. 1-2, p. 255-289en_US
dcterms.isPartOfMathematical programmingen_US
dcterms.issued2019-09-
dc.identifier.scopus2-s2.0-85044583593-
dc.identifier.eissn1436-4646en_US
dc.description.validate202305 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAMA-0390-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6830949-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Chen_Discrete_Approximation_Two-Stage.pdfPre-Published version998.97 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

85
Citations as of Apr 14, 2025

Downloads

64
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

57
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

52
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.