Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98616
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorHan, Den_US
dc.creatorSun, Den_US
dc.creatorZhang, Len_US
dc.date.accessioned2023-05-10T02:00:41Z-
dc.date.available2023-05-10T02:00:41Z-
dc.identifier.issn0364-765Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/98616-
dc.language.isoenen_US
dc.publisherInstitute for Operations Research and the Management Sciences (INFORMS)en_US
dc.rightsCopyright © 2017, INFORMSen_US
dc.rightsThis is the accepted manuscript of the following article: Deren Han, Defeng Sun, Liwei Zhang (2018) Linear Rate Convergence of the Alternating Direction Method of Multipliers for Convex Composite Programming. Mathematics of Operations Research 43(2):622-637, which has been published in final form at https://doi.org/10.1287/moor.2017.0875.en_US
dc.subjectADMMen_US
dc.subjectCalmnessen_US
dc.subjectQ-linear convergenceen_US
dc.subjectMultiblocken_US
dc.subjectComposite conic programmingen_US
dc.titleLinear rate convergence of the alternating direction method of multipliers for convex composite programmingen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage622en_US
dc.identifier.epage637en_US
dc.identifier.volume43en_US
dc.identifier.issue2en_US
dc.identifier.doi10.1287/moor.2017.0875en_US
dcterms.abstractIn this paper, we aim to prove the linear rate convergence of the alternating direction method of multipliers (ADMM) for solving linearly constrained convex composite optimization problems. Under a mild calmness condition, which holds automatically for convex composite piecewise linear-quadratic programming, we establish the global Q-linear rate of convergence for a general semi-proximal ADMM with the dual step-length being taken in (0, (1+51/2)/2). This semi-proximal ADMM, which covers the classic one, has the advantage to resolve the potentially nonsolvability issue of the subproblems in the classic ADMM and possesses the abilities of handling the multi-block cases efficiently. We demonstrate the usefulness of the obtained results when applied to two- and multi-block convex quadratic (semidefinite) programming.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMathematics of operations research, May 2018, v. 43, no. 2, p. 622-637en_US
dcterms.isPartOfMathematics of operations researchen_US
dcterms.issued2018-05-
dc.identifier.scopus2-s2.0-85047065080-
dc.identifier.eissn1526-5471en_US
dc.description.validate202305 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAMA-0382-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextSingapore Ministry of Educationen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS12995291-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Sun_Linear_Rate_Convergence.pdfPre-Published version1.08 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

78
Citations as of Apr 14, 2025

Downloads

67
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

96
Citations as of Sep 12, 2025

WEB OF SCIENCETM
Citations

77
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.