Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98613
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorLi, Xen_US
dc.creatorSun, Den_US
dc.creatorToh, KCen_US
dc.date.accessioned2023-05-10T02:00:40Z-
dc.date.available2023-05-10T02:00:40Z-
dc.identifier.issn1052-6234en_US
dc.identifier.urihttp://hdl.handle.net/10397/98613-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2018 Society for Industrial and Applied Mathematicsen_US
dc.rightsThe following publication Li, X., Sun, D., & Toh, K. C. (2018). On efficiently solving the subproblems of a level-set method for fused lasso problems. SIAM Journal on Optimization, 28(2), 1842-1866 is available at https://doi.org/10.1137/17M1136390.en_US
dc.subjectLevel-set methoden_US
dc.subjectFused Lassoen_US
dc.subjectConvex composite programmingen_US
dc.subjectGeneralized Jacobianen_US
dc.subjectSemismooth Newton methoden_US
dc.titleOn efficiently solving the subproblems of a level-set method for fused Lasso problemsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1842en_US
dc.identifier.epage1866en_US
dc.identifier.volume28en_US
dc.identifier.issue2en_US
dc.identifier.doi10.1137/17M1136390en_US
dcterms.abstractIn applying the level-set method developed in [E. Van den Berg and M. P. Friedlander, SIAM J. Sci. Comput., 31 (2008), pp. 890--912] and [E. Van den Berg and M. P. Friedlander, SIAM J. Optim., 21 (2011), pp. 1201--1229] to solve the fused lasso problems, one needs to solve a sequence of regularized least squares subproblems. In order to make the level-set method practical, we develop a highly efficient inexact semismooth Newton based augmented Lagrangian method for solving these subproblems. The efficiency of our approach is based on several ingredients that constitute the main contributions of this paper. First, an explicit formula for constructing the generalized Jacobian of the proximal mapping of the fused lasso regularizer is derived. Second, the special structure of the generalized Jacobian is carefully extracted and analyzed for the efficient implementation of the semismooth Newton method. Finally, numerical results, including the comparison between our approach and several state-of-the-art solvers, on real data sets are presented to demonstrate the high efficiency and robustness of our proposed algorithm in solving challenging large-scale fused lasso problems.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on optimization, 2018, v. 28, no. 2, p. 1842-1866en_US
dcterms.isPartOfSIAM journal on optimizationen_US
dcterms.issued2018-
dc.identifier.scopus2-s2.0-85049670868-
dc.identifier.eissn1095-7189en_US
dc.description.validate202305 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberAMA-0371-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS20280473-
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
17m1136390.pdf568.16 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

101
Last Week
7
Last month
Citations as of Nov 10, 2025

Downloads

78
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

40
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

42
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.