Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98608
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorYuen, TPen_US
dc.creatorWong, Hen_US
dc.creatorYiu, KFCen_US
dc.date.accessioned2023-05-10T02:00:38Z-
dc.date.available2023-05-10T02:00:38Z-
dc.identifier.issn0167-9473en_US
dc.identifier.urihttp://hdl.handle.net/10397/98608-
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.rights© 2018 Elsevier B.V. All rights reserved.en_US
dc.rights© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Yuen, T. P., Wong, H., & Yiu, K. F. C. (2018). On constrained estimation of graphical time series models. Computational Statistics & Data Analysis, 124, 27-52 is available at https://doi.org/10.1016/j.csda.2018.01.019.en_US
dc.subjectGraphical modelsen_US
dc.subjectTime seriesen_US
dc.subjectEstimationen_US
dc.subjectOptimizationen_US
dc.subjectAir pollutionen_US
dc.titleOn constrained estimation of graphical time series modelsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage27en_US
dc.identifier.epage52en_US
dc.identifier.volume124en_US
dc.identifier.doi10.1016/j.csda.2018.01.019en_US
dcterms.abstractGraphical time series models encode the conditional independence among the variables of a multivariate time series. An iterative method is proposed to estimate a graphical time series model based on a sparse vector autoregressive process. The method estimates both the autoregressive coefficients and the inverse of noise covariance matrix under sparsity constraints on both the coefficients and the inverse covariance matrix. This iterative method estimates a sparse vector autoregressive model by considering maximum likelihood estimation with the sparsity constraints as a biconcave problem, where the optimization problem becomes concave when either the autoregressive coefficients or the inverse noise covariance matrix is fixed. The method also imposes fewer restrictions in the estimation comparing to the use of a structural vector autoregressive model to study the dynamic interdependencies between time series variables.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationComputational statistics and data analysis, Aug. 2018, v. 124, p. 27-52en_US
dcterms.isPartOfComputational statistics and data analysisen_US
dcterms.issued2018-08-
dc.identifier.scopus2-s2.0-85043510460-
dc.identifier.eissn1872-7352en_US
dc.description.validate202305 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAMA-0361-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS24337006-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Yuen_Constrained_Estimation_Graphical.pdfPre-Published version1.46 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

62
Citations as of Apr 14, 2025

Downloads

56
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

8
Citations as of Sep 12, 2025

WEB OF SCIENCETM
Citations

9
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.