Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98604
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorJiang, Hen_US
dc.creatorChing, WKen_US
dc.creatorYiu, KFCen_US
dc.creatorQiu, Yen_US
dc.date.accessioned2023-05-10T02:00:37Z-
dc.date.available2023-05-10T02:00:37Z-
dc.identifier.issn1568-4946en_US
dc.identifier.urihttp://hdl.handle.net/10397/98604-
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.rights© 2018 Elsevier B.V. All rights reserved.en_US
dc.rights© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Jiang, H., Ching, W. K., Yiu, K. F. C., & Qiu, Y. (2018). Stationary Mahalanobis kernel SVM for credit risk evaluation. Applied Soft Computing, 71, 407-417 is available at https://doi.org/10.1016/j.asoc.2018.07.005.en_US
dc.subjectMahalanobis distanceen_US
dc.subjectSupport Vector Machine (SVM)en_US
dc.subjectIndefiniteen_US
dc.subjectStationary kernelen_US
dc.subjectCredit risken_US
dc.titleStationary Mahalanobis kernel SVM for credit risk evaluationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage407en_US
dc.identifier.epage417en_US
dc.identifier.volume71en_US
dc.identifier.doi10.1016/j.asoc.2018.07.005en_US
dcterms.abstractThis paper proposed Mahalanobis distance induced kernels in Support Vector Machines (SVMs) with applications in credit risk evaluation. We take a particular interest in stationary ones. Compared to traditional stationary kernels, Mahalanobis kernels take into account on feature's correlation and can provide a more suitable description on the behavior of the data sets. Results on real world credit data sets show that stationary kernels with Mahalanobis distance outperform the stationary kernels with various distance measures and they can also compete with frequently used kernels in SVM. The superior performance of our proposed kernels over other classical machine learning methods and the successful application of the kernels in large scale credit risk evaluation problems may imply that we have proposed a new class of kernels appropriate for credit risk evaluations.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationApplied soft computing, Oct. 2018, v. 71, p. 407-417en_US
dcterms.isPartOfApplied soft computingen_US
dcterms.issued2018-10-
dc.identifier.scopus2-s2.0-85050113501-
dc.identifier.eissn1872-9681en_US
dc.description.validate202305 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAMA-0345-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS24336815-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Yiu_Stationary_Mahalanobis_Kernel.pdfPre-Published version795.48 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

67
Citations as of Apr 14, 2025

Downloads

75
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

42
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

36
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.