Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98601
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorGunzburger, Men_US
dc.creatorLi, Ben_US
dc.creatorWang, Jen_US
dc.date.accessioned2023-05-10T02:00:36Z-
dc.date.available2023-05-10T02:00:36Z-
dc.identifier.issn0025-5718en_US
dc.identifier.urihttp://hdl.handle.net/10397/98601-
dc.language.isoenen_US
dc.publisherAmerican Mathematical Societyen_US
dc.rightsFirst published in Math. Comp. 88(318), 2019, 1715-1741, published by the American Mathematical Society. © 2018 American Mathematical Society.en_US
dc.rightsThis manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.subjectError estimatesen_US
dc.subjectSpace-time white noiseen_US
dc.subjectStochastic partial differential equationen_US
dc.subjectTime-fractional derivativeen_US
dc.titleSharp convergence rates of time discretization for stochastic time-fractional PDEs subject to additive space-time white noiseen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1715en_US
dc.identifier.epage1741en_US
dc.identifier.volume88en_US
dc.identifier.issue318en_US
dc.identifier.doi10.1090/mcom/3397en_US
dcterms.abstractThe stochastic time-fractional equation ∂ t Ψ - Δ∂ t 1-α Ψ = f + W˙ with space-time white noise W˙ is discretized in time by a backward-Euler convolution quadrature for which the sharp-order error estimateen_US
dcterms.abstract[Formula]en_US
dcterms.abstractis established for α ∈ (0, 2/d), where d denotes the spatial dimension, Ψ n the approximate solution at the nth time step, and E the expectation operator. In particular, the result indicates sharp convergence rates of numerical solutions for both stochastic subdiffusion and diffusion-wave problems in one spatial dimension. Numerical examples are presented to illustrate the theoretical analysis.en_US
dcterms.abstract[Formula not complete, refer to publisher pdf]en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMathematics of computation, 2019, v. 88, no. 318, p. 1715-1741en_US
dcterms.isPartOfMathematics of computationen_US
dcterms.issued2019-
dc.identifier.scopus2-s2.0-85063947777-
dc.identifier.eissn1088-6842en_US
dc.description.validate202305 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAMA-0333-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS22966625-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Li_Sharp_Convergence_Rates.pdfPre-Published version887.95 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

69
Citations as of Apr 14, 2025

Downloads

37
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

46
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

29
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.