Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98589
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorDeng, Sen_US
dc.creatorZhao, Xen_US
dc.date.accessioned2023-05-10T02:00:31Z-
dc.date.available2023-05-10T02:00:31Z-
dc.identifier.issn0162-1459en_US
dc.identifier.urihttp://hdl.handle.net/10397/98589-
dc.language.isoenen_US
dc.publisherAmerican Statistical Associationen_US
dc.rights© 2018 American Statistical Associationen_US
dc.rightsThis is an Accepted Manuscript of an article published by Taylor & Francis in Journal of the American Statistical Association on 15 Aug 2018 (published online), available at: http://www.tandfonline.com/10.1080/01621459.2018.1482757.en_US
dc.subjectAsymptotic normalityen_US
dc.subjectCovariate-adjusted regressionen_US
dc.subjectDistorted longitudinal dataen_US
dc.subjectInformative observationtimesen_US
dc.subjectLatent variableen_US
dc.titleCovariate-adjusted regression for distorted longitudinal data with informative observation timesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1241en_US
dc.identifier.epage1250en_US
dc.identifier.volume114en_US
dc.identifier.issue527en_US
dc.identifier.doi10.1080/01621459.2018.1482757en_US
dcterms.abstractIn many longitudinal studies, repeated response and predictors are not directly observed, but can be treated as distorted by unknown functions of a common confounding covariate. Moreover, longitudinal data involve an observation process which may be informative with a longitudinal response process in practice. To deal with such complex data, we propose a class of flexible semiparametric covariate-adjusted joint models. The new models not only allow for the longitudinal response to be correlated with observation times through latent variables and completely unspecified link functions, but they also characterize distorted longitudinal response and predictors by unknown multiplicative factors depending on time and a confounding covariate. For estimation of regression parameters in the proposed models, we develop a novel covariate-adjusted estimating equation approach which does not rely on forms of link functions and distributions of frailties. The asymptotic properties of resulting parameter estimators are established and examined by simulation studies. A longitudinal data example containing calcium absorption and intake measurements is provided for illustration. Supplementary materials for this article are available online.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of the American Statistical Association, 2019, v. 114, no. 527, p. 1241-1250en_US
dcterms.isPartOfJournal of the American Statistical Associationen_US
dcterms.issued2019-
dc.identifier.scopus2-s2.0-85052077135-
dc.identifier.eissn1537-274Xen_US
dc.description.validate202305 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAMA-0277-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNSFCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS23081985-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Zhao_Covariate-adjusted_Regression_Distorted.pdfPre-Published version885.81 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

67
Citations as of Apr 14, 2025

Downloads

52
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

3
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

1
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.