Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98586
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorChen, Len_US
dc.creatorSun, Den_US
dc.creatorToh, KCen_US
dc.creatorZhang, Nen_US
dc.date.accessioned2023-05-10T02:00:30Z-
dc.date.available2023-05-10T02:00:30Z-
dc.identifier.issn0254-9409en_US
dc.identifier.urihttp://hdl.handle.net/10397/98586-
dc.language.isoenen_US
dc.publisherGlobal Science Pressen_US
dc.rights© Global Science Pressen_US
dc.rightsThis is the accepted version of the following article: Liang Chen, Defeng Sun, Kim-Chuan Toh & Ning Zhang. (2019). A Unified Algorithmic Framework of Symmetric Gauss-Seidel Decomposition Based Proximal ADMMs for Convex Composite Programming. Journal of Computational Mathematics, 37(6), 739-757, which has been published in https://doi.org/10.4208/jcm.1803-m2018-0278.en_US
dc.subjectConvex optimizationen_US
dc.subjectMulti-blocken_US
dc.subjectAlternating directionmethod of multipliersen_US
dc.subjectSymmetric Gauss-Seidel decompositionen_US
dc.subjectMajorizationen_US
dc.titleA unified algorithmic framework of symmetric Gauss-Seidel decomposition based proximal ADMMS for convex composite programmingen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage739en_US
dc.identifier.epage757en_US
dc.identifier.volume37en_US
dc.identifier.issue6en_US
dc.identifier.doi10.4208/jcm.1803-m2018-0278en_US
dcterms.abstractThis paper aims to present a fairly accessible generalization of several symmetric Gauss-Seidel decomposition based multi-block proximal alternating direction methods of multipliers (ADMMs) for convex composite optimization problems. The proposed method unifies and refines many constructive techniques that were separately developed for the computational efficiency of multi-block ADMM-type algorithms. Specifically, the majorized augmented Lagrangian functions, the indefinite proximal terms, the inexact symmetric Gauss-Seidel decomposition theorem, the tolerance criteria of approximately solving the subproblems, and the large dual step-lengths, are all incorporated in one algorithmic framework, which we named as sGS-imiPADMM. From the popularity of convergent variants of multi-block ADMMs in recent years, especially for high-dimensional multi-block convex composite conic programming problems, the unification presented in this paper, as well as the corresponding convergence results, may have the great potential of facilitating the implementation of many multi-block ADMMs in various problem settings.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of computational mathematics, 2019, v. 37, no. 6, p. 739-757en_US
dcterms.isPartOfJournal of computational mathematicsen_US
dcterms.issued2019-
dc.identifier.scopus2-s2.0-85085524323-
dc.identifier.eissn1991-7139en_US
dc.description.validate202305 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAMA-0271-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextPolyUen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS25864620-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Chen_Unified_Algorithmic_Framework.pdfPre-Published version1.01 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

55
Citations as of Apr 14, 2025

Downloads

28
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

6
Citations as of Sep 12, 2025

WEB OF SCIENCETM
Citations

5
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.