Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98583
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorGuo, Leien_US
dc.creatorChen, Xen_US
dc.date.accessioned2023-05-10T02:00:29Z-
dc.date.available2023-05-10T02:00:29Z-
dc.identifier.issn0025-5610en_US
dc.identifier.urihttp://hdl.handle.net/10397/98583-
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rights© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019en_US
dc.rightsThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use (https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s10107-019-01435-7.en_US
dc.subjectMathematical program with complementarity constraintsen_US
dc.subjectNon-Lipschitzcontinuityen_US
dc.subjectSparse solutionen_US
dc.subjectOptimality conditionen_US
dc.subjectApproximation methoden_US
dc.titleMathematical programs with complementarity constraints and a non-Lipschitz objective: optimality and approximationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage455en_US
dc.identifier.epage485en_US
dc.identifier.volume185en_US
dc.identifier.issue1-2en_US
dc.identifier.doi10.1007/s10107-019-01435-7en_US
dcterms.abstractWe consider a class of mathematical programs with complementarity constraints (MPCC) where the objective function involves a non-Lipschitz sparsity-inducing term. Due to the existence of the non-Lipschitz term, existing constraint qualifications for locally Lipschitz MPCC cannot ensure that necessary optimality conditions hold at a local minimizer. In this paper, we present necessary optimality conditions and MPCC-tailored qualifications for the non-Lipschitz MPCC. The proposed qualifications are related to the constraints and the non-Lipschitz term, which ensure that local minimizers satisfy these necessary optimality conditions. Moreover, we present an approximation method for solving the non-Lipschitz MPCC and establish its convergence. Finally, we use numerical examples of sparse solutions of linear complementarity problems and the second-best road pricing problem in transportation science to illustrate the effectiveness of our approximation method for solving the non-Lipschitz MPCC.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMathematical programming, Jan. 2021, v. 185, no. 1-2, p. 455-485en_US
dcterms.isPartOfMathematical programmingen_US
dcterms.issued2021-01-
dc.identifier.scopus2-s2.0-85073970357-
dc.identifier.eissn1436-4646en_US
dc.description.validate202305 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAMA-0262-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS27015583-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Chen_Mathematical_Programs_Complementarity.pdfPre-Published version1.13 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

86
Citations as of Apr 14, 2025

Downloads

48
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

14
Citations as of Sep 12, 2025

WEB OF SCIENCETM
Citations

11
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.