Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98579
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorCui, Yen_US
dc.creatorSun, Den_US
dc.creatorToh, KCen_US
dc.date.accessioned2023-05-10T02:00:27Z-
dc.date.available2023-05-10T02:00:27Z-
dc.identifier.issn1052-6234en_US
dc.identifier.urihttp://hdl.handle.net/10397/98579-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2019 Society for Industrial and Applied Mathematicsen_US
dc.rightsThe following publication Cui, Y., Sun, D., & Toh, K. C. (2019). Computing the best approximation over the intersection of a polyhedral set and the doubly nonnegative cone. SIAM Journal on Optimization, 29(4), 2785-2813 is available at https://doi.org/10.1137/18M1175562.en_US
dc.subjectSemidefinite programmingen_US
dc.subjectDoubly nonnegative coneen_US
dc.subjectSemismooth Newtonen_US
dc.subjectAccel-erationen_US
dc.subjectComplexityen_US
dc.titleComputing the best approximation over the intersection of a polyhedral set and the doubly nonnegative coneen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage2785en_US
dc.identifier.epage2813en_US
dc.identifier.volume29en_US
dc.identifier.issue4en_US
dc.identifier.doi10.1137/18M1175562en_US
dcterms.abstractThis paper introduces an efficient algorithm for computing the best approximation of a given matrix onto the intersection of linear equalities, inequalities, and the doubly nonnegative cone (the cone of all positive semidefinite matrices whose elements are nonnegative). In contrast to directly applying the block coordinate descent type methods, we propose an inexact accelerated (two-) block coordinate descent algorithm to tackle the four-block unconstrained nonsmooth dual program. The proposed algorithm hinges on the superlinearly convergent semismooth Newton method to solve each of the two subproblems generated from the (two-)block coordinate descent, which have no closed form solutions due to the merger of the original four blocks of variables. The O(1/k2) iteration complexity of the proposed algorithm is established. Extensive numerical results over various large scale semidefinite programming instances from relaxations of combinatorial problems demonstrate the effectiveness of the proposed algorithm.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on optimization, 2019, v. 29, no. 4, p. 2785-2813en_US
dcterms.isPartOfSIAM journal on optimizationen_US
dcterms.issued2019-
dc.identifier.scopus2-s2.0-85076158275-
dc.identifier.eissn1095-7189en_US
dc.description.validate202305 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberAMA-0249-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextPolyUen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS20279907-
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
18m1175562.pdf526 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

209
Citations as of Nov 10, 2025

Downloads

57
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

3
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

3
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.