Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98578
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorCui, Yen_US
dc.creatorSun, Den_US
dc.creatorToh, KCen_US
dc.date.accessioned2023-05-10T02:00:27Z-
dc.date.available2023-05-10T02:00:27Z-
dc.identifier.issn0025-5610en_US
dc.identifier.urihttp://hdl.handle.net/10397/98578-
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rights© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2018en_US
dc.rightsThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use (https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s10107-018-1300-6.en_US
dc.subjectAugmented Lagrangian methoden_US
dc.subjectConvex composite conic programmingen_US
dc.subjectR-superlinearen_US
dc.subjectQuadratic growth conditionen_US
dc.subjectImplementable criteriaen_US
dc.titleOn the R-superlinear convergence of the KKT residuals generated by the augmented Lagrangian method for convex composite conic programmingen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage381en_US
dc.identifier.epage415en_US
dc.identifier.volume178en_US
dc.identifier.issue1-2en_US
dc.identifier.doi10.1007/s10107-018-1300-6en_US
dcterms.abstractDue to the possible lack of primal-dual-type error bounds, it was not clear whether the Karush–Kuhn–Tucker (KKT) residuals of the sequence generated by the augmented Lagrangian method (ALM) for solving convex composite conic programming (CCCP) problems converge superlinearly. In this paper, we resolve this issue by establishing the R-superlinear convergence of the KKT residuals generated by the ALM under only a mild quadratic growth condition on the dual of CCCP, with easy-to-implement stopping criteria for the augmented Lagrangian subproblems. This discovery may help to explain the good numerical performance of several recently developed semismooth Newton-CG based ALM solvers for linear and convex quadratic semidefinite programming.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMathematical programming, Nov. 2019, v. 178, no. 1-2, p. 381-415en_US
dcterms.isPartOfMathematical programmingen_US
dcterms.issued2019-11-
dc.identifier.scopus2-s2.0-85049669107-
dc.identifier.eissn1436-4646en_US
dc.description.validate202305 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAMA-0248-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextPolyUen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS20280230-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Sun_R-Superlinear_Convergence_Kkt.pdfPre-Published version1.05 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

78
Citations as of Apr 14, 2025

Downloads

34
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

34
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

28
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.