Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98574
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorHu, Sen_US
dc.creatorSun, Den_US
dc.creatorToh, KCen_US
dc.date.accessioned2023-05-10T02:00:24Z-
dc.date.available2023-05-10T02:00:24Z-
dc.identifier.issn0895-4798en_US
dc.identifier.urihttp://hdl.handle.net/10397/98574-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2019 Society for Industrial and Applied Mathematicsen_US
dc.rightsThe following publication Hu, S., Sun, D., & Toh, K. C. (2019). Best nonnegative rank-one approximations of tensors. SIAM Journal on Matrix Analysis and Applications, 40(4), 1527-1554 is available at https://doi.org/10.1137/18M1224064.en_US
dc.subjectTensoren_US
dc.subjectNonnegative rank-1 approximationen_US
dc.subjectPolynomialen_US
dc.subjectMultiformsen_US
dc.subjectDoubly non-negative semidefinite programen_US
dc.subjectDoubly nonnegative relaxation methoden_US
dc.titleBest nonnegative rank-one approximations of tensorsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1527en_US
dc.identifier.epage1554en_US
dc.identifier.volume40en_US
dc.identifier.issue4en_US
dc.identifier.doi10.1137/18M1224064en_US
dcterms.abstractIn this paper, we study the polynomial optimization problem of a multiform over the intersection of the multisphere and the nonnegative orthants. This class of problems is NP-hard in general and includes the problem of finding the best nonnegative rank-one approximation of a given tensor. A Positivstellensatz is given for this class of polynomial optimization problems, based on which a globally convergent hierarchy of doubly nonnegative (DNN) relaxations is proposed. A (zeroth order) DNN relaxation method is applied to solve these problems, resulting in linear matrix optimization problems under both the positive semidefinite and nonnegative conic constraints. A worst case approximation bound is given for this relaxation method. The recent solver SDPNAL+ is adopted to solve this class of matrix optimization problems. Typically the DNN relaxations are tight, and hence the best nonnegative rank-one approximation of a tensor can be obtained frequently. Extensive numerical experiments show that this approach is quite promising.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on matrix analysis and applications, 2020, v. 40, no. 4, p. 1527-1554en_US
dcterms.isPartOfSIAM journal on matrix analysis and applicationsen_US
dcterms.issued2019-
dc.identifier.scopus2-s2.0-85078563916-
dc.identifier.eissn1095-7162en_US
dc.description.validate202305 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberAMA-0235-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextPolyUen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS20279847-
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
18m1224064.pdf488.47 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

101
Last Week
0
Last month
Citations as of Nov 10, 2025

Downloads

105
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

4
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

5
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.