Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98570
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorWang, Men_US
dc.creatorLiu, Cen_US
dc.creatorXie, Ten_US
dc.creatorSun, Zen_US
dc.date.accessioned2023-05-10T02:00:23Z-
dc.date.available2023-05-10T02:00:23Z-
dc.identifier.issn0167-9473en_US
dc.identifier.urihttp://hdl.handle.net/10397/98570-
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.rights©2019 Elsevier B.V. All rights reserved.en_US
dc.rights© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Wang, M., Liu, C., Xie, T., & Sun, Z. (2020). Data-driven model checking for errors-in-variables varying-coefficient models with replicate measurements. Computational Statistics & Data Analysis, 141, 12-27 is available at https://doi.org/10.1016/j.csda.2019.06.003.en_US
dc.subjectAdditive measurement erroren_US
dc.subjectEmpirical processen_US
dc.subjectModel checken_US
dc.subjectReplicate measurementsen_US
dc.subjectVarying-coefficient modelsen_US
dc.titleData-driven model checking for errors-in-variables varying-coefficient models with replicate measurementsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage12en_US
dc.identifier.epage27en_US
dc.identifier.volume141en_US
dc.identifier.doi10.1016/j.csda.2019.06.003en_US
dcterms.abstractIn this work, the adequacy check of errors-in-variables varying-coefficient models is investigated when replicate measurements are available. Estimation using the naive method that ignores measurement errors is biased. After the calibration of the estimators of the regression coefficient functions, we construct an empirical-process-based test statistic by the attenuation of corrected residuals. The asymptotic properties of the test statistic under the null hypothesis, global and various local alternatives are established. Simulation studies and real data analyses reveal that the proposed test performs satisfactorily.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationComputational statistics and data analysis, Jan. 2020, v. 141, p. 12-27en_US
dcterms.isPartOfComputational statistics and data analysisen_US
dcterms.issued2020-01-
dc.identifier.scopus2-s2.0-85068524116-
dc.identifier.eissn1872-7352en_US
dc.description.validate202305 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAMA-0225-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS25070211-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Liu_Data-Driven_Model_Checking.pdfPre-Published version1.02 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

71
Citations as of Apr 14, 2025

Downloads

74
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

8
Citations as of Sep 12, 2025

WEB OF SCIENCETM
Citations

5
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.