Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98569
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorLiu, Ten_US
dc.creatorLu, Zen_US
dc.creatorChen, Xen_US
dc.creatorDai, YHen_US
dc.date.accessioned2023-05-10T02:00:22Z-
dc.date.available2023-05-10T02:00:22Z-
dc.identifier.issn0272-4979en_US
dc.identifier.urihttp://hdl.handle.net/10397/98569-
dc.language.isoenen_US
dc.publisherOxford University Pressen_US
dc.rights© The Author(s) 2018. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.en_US
dc.rightsThis is a pre-copyedited, author-produced version of an article accepted for publication in IMA Journal of Numerical Analysis following peer review. The version of record Tianxiang Liu, Zhaosong Lu, Xiaojun Chen, Yu-Hong Dai, An exact penalty method for semidefinite-box-constrained low-rank matrix optimization problems, IMA Journal of Numerical Analysis, Volume 40, Issue 1, January 2020, Pages 563–586 is available online at: https://doi.org/10.1093/imanum/dry069.en_US
dc.subjectRank constrained optimizationen_US
dc.subjectNon-Lipschitz penaltyen_US
dc.subjectNonmonotone proximal gradienten_US
dc.subjectPenalty methoden_US
dc.titleAn exact penalty method for semidefinite-box-constrained low-rank matrix optimization problemsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage563en_US
dc.identifier.epage586en_US
dc.identifier.volume40en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1093/imanum/dry069en_US
dcterms.abstractThis paper considers a matrix optimization problem where the objective function is continuously differentiable and the constraints involve a semidefinite-box constraint and a rank constraint. We first replace the rank constraint by adding a non-Lipschitz penalty function in the objective and prove that this penalty problem is exact with respect to the original problem. Next, for the penalty problem we present a nonmonotone proximal gradient (NPG) algorithm whose subproblem can be solved by Newton’s method with globally quadratic convergence. We also prove the convergence of the NPG algorithm to a first-order stationary point of the penalty problem. Furthermore, based on the NPG algorithm, we propose an adaptive penalty method (APM) for solving the original problem. Finally, the efficiency of an APM is shown via numerical experiments for the sensor network localization problem and the nearest low-rank correlation matrix problem.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIMA journal of numerical analysis, Jan. 2020, v. 40, no. 1, p. 563-586en_US
dcterms.isPartOfIMA journal of numerical analysisen_US
dcterms.issued2020-01-
dc.identifier.scopus2-s2.0-85084507577-
dc.identifier.eissn1464-3642en_US
dc.description.validate202305 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAMA-0224-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS27015361-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Liu_Exact_Penalty_Method.pdfPre-Published version1.12 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

71
Citations as of Apr 14, 2025

Downloads

59
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

11
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

5
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.