Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98566
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorZhang, Cen_US
dc.creatorChen, Xen_US
dc.date.accessioned2023-05-10T02:00:21Z-
dc.date.available2023-05-10T02:00:21Z-
dc.identifier.issn1052-6234en_US
dc.identifier.urihttp://hdl.handle.net/10397/98566-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2020 Society for Industrial and Applied Mathematicsen_US
dc.rightsThe following publication Zhang, C., & Chen, X. (2020). A smoothing active set method for linearly constrained non-lipschitz nonconvex optimization. SIAM Journal on Optimization, 30(1), 1-30 is available at https://doi.org/10.1137/18M119611X.en_US
dc.subjectNon-Lipschitzen_US
dc.subjectNonconvexen_US
dc.subjectLinearly constraineden_US
dc.subjectSmoothing active set methoden_US
dc.subjectStationary pointen_US
dc.titleA smoothing active set method for linearly constrained non-Lipschitz nonconvex optimizationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1en_US
dc.identifier.epage30en_US
dc.identifier.volume30en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1137/18M119611Xen_US
dcterms.abstractWe propose a novel smoothing active set method for linearly constrained nonLipschitz nonconvex problems. At each step of the proposed method, we approximate the objective function by a smooth function with a fixed smoothing parameter and employ a new active set method for minimizing the smooth function over the original feasible set, until a special updating rule for the smoothing parameter meets. The updating rule is always satisfied within a finite number of iterations since the new active set method for smooth problems proposed in this paper forces at least one subsequence of projected gradients to zero. Any accumulation point of the smoothing active set method is a stationary point associated with the smoothing function used in the method, which is necessary for local optimality of the original problem. And any accumulation point for the \ell 2 - \ell p (0 < p < 1) sparse optimization model is a limiting stationary point, which is a local minimizer under a certain second-order condition. Numerical experiments demonstrate the efficiency and effectiveness of our smoothing active set method for hyperspectral unmixing on a 3 dimensional image cube of large size.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on optimization, 2020, v. 30, no. 1, p. 1-30en_US
dcterms.isPartOfSIAM journal on optimizationen_US
dcterms.issued2020-
dc.identifier.scopus2-s2.0-85084928146-
dc.identifier.eissn1095-7189en_US
dc.description.validate202305 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberAMA-0220-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS25829509-
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
18m119611x.pdf796.27 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

115
Last Week
30
Last month
Citations as of Nov 10, 2025

Downloads

205
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

20
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

17
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.