Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98563
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorLi, Ben_US
dc.creatorWang, Jen_US
dc.creatorXu, Len_US
dc.date.accessioned2023-05-10T02:00:20Z-
dc.date.available2023-05-10T02:00:20Z-
dc.identifier.issn0036-1429en_US
dc.identifier.urihttp://hdl.handle.net/10397/98563-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2020 Society for Industrial and Applied Mathematicsen_US
dc.rightsThe following publication Li, B., Wang, J., & Xu, L. (2020). A convergent linearized Lagrange finite element method for the magneto-hydrodynamic equations in two-dimensional nonsmooth and nonconvex domains. SIAM Journal on Numerical Analysis, 58(1), 430-459 is available at https://doi.org/10.1137/18M1205649.en_US
dc.subjectMHDen_US
dc.subjectNonsmoothen_US
dc.subjectNonconvexen_US
dc.subjectH1-conformingen_US
dc.subjectFinite elementen_US
dc.subjectConvergenceen_US
dc.titleA convergent linearized Lagrange finite element method for the magneto-hydrodynamic equations in two-dimensional nonsmooth and nonconvex domainsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage430en_US
dc.identifier.epage459en_US
dc.identifier.volume58en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1137/18M1205649en_US
dcterms.abstractA new fully discrete linearized H1-conforming Lagrange finite element method is proposed for solving the two-dimensional magneto-hydrodynamics equations based on a magnetic potential formulation. The proposed method yields numerical solutions that converge in general domains that may be nonconvex, nonsmooth, and multiconnected. The convergence of subsequences of the numerical solutions is proved only based on the regularity of the initial conditions and source terms without extra assumptions on the regularity of the solution. Strong convergence in L2(0, T;L2(Ω)) was proved for the numerical solutions of both u and H without any mesh restriction.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on numerical analysis, 2020, v. 58, no. 1, p. 430-459en_US
dcterms.isPartOfSIAM journal on numerical analysisen_US
dcterms.issued2020-
dc.identifier.scopus2-s2.0-85079782322-
dc.identifier.eissn1095-7170en_US
dc.description.validate202305 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberAMA-0214-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS22965729-
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
18m1205649.pdf319.82 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

99
Citations as of Oct 6, 2025

Downloads

62
Citations as of Oct 6, 2025

SCOPUSTM   
Citations

31
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

17
Citations as of Jun 27, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.