Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98562
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorChen, Xen_US
dc.creatorToint, PLen_US
dc.date.accessioned2023-05-10T02:00:20Z-
dc.date.available2023-05-10T02:00:20Z-
dc.identifier.issn0025-5610en_US
dc.identifier.urihttp://hdl.handle.net/10397/98562-
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rights© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020en_US
dc.rightsThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use (https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s10107-020-01470-9.en_US
dc.subjectComplexity theoryen_US
dc.subjectNonlinear optimizationen_US
dc.subjectNon-Lipschitz functionsen_US
dc.subjectPartially-separable problemsen_US
dc.subjectGroup sparsityen_US
dc.subjectIsotropic modelen_US
dc.titleHigh-order evaluation complexity for convexly-constrained optimization with non-Lipschitzian group sparsity termsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage47en_US
dc.identifier.epage78en_US
dc.identifier.volume187en_US
dc.identifier.issue1-2en_US
dc.identifier.doi10.1007/s10107-020-01470-9en_US
dcterms.abstractThis paper studies high-order evaluation complexity for partially separable convexly-constrained optimization involving non-Lipschitzian group sparsity terms in a nonconvex objective function. We propose a partially separable adaptive regularization algorithm using a pth order Taylor model and show that the algorithm needs at most O(ϵ-(p+1)/(p-q+1)) evaluations of the objective function and its first p derivatives (whenever they exist) to produce an (ϵ, δ) -approximate qth-order stationary point. Our algorithm uses the underlying rotational symmetry of the Euclidean norm function to build a Lipschitzian approximation for the non-Lipschitzian group sparsity terms, which are defined by the group ℓ2–ℓa norm with a∈ (0 , 1). The new result shows that the partially-separable structure and non-Lipschitzian group sparsity terms in the objective function do not affect the worst-case evaluation complexity order.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMathematical programming, May 2021, v. 187, no. 1-2, p. 47-78en_US
dcterms.isPartOfMathematical programmingen_US
dcterms.issued2021-05-
dc.identifier.scopus2-s2.0-85078436836-
dc.identifier.eissn1436-4646en_US
dc.description.validate202305 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAMA-0211-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS27015454-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Chen_High-Order_Evaluation_Complexity.pdfPre-Published version1.05 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

65
Citations as of Apr 14, 2025

Downloads

51
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

9
Citations as of Sep 12, 2025

WEB OF SCIENCETM
Citations

7
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.