Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98558
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorDing, Cen_US
dc.creatorSun, Den_US
dc.creatorSun, Jen_US
dc.creatorToh, KCen_US
dc.date.accessioned2023-05-10T02:00:18Z-
dc.date.available2023-05-10T02:00:18Z-
dc.identifier.issn1052-6234en_US
dc.identifier.urihttp://hdl.handle.net/10397/98558-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2020 Society for Industrial and Applied Mathematicsen_US
dc.rightsThe following publication Ding, C., Sun, D., Sun, J., & Toh, K. C. (2020). Spectral operators of matrices: semismoothness and characterizations of the generalized Jacobian. SIAM Journal on Optimization, 30(1), 630-659 is available at https://doi.org/10.1137/18M1222235.en_US
dc.subjectSpectral operatorsen_US
dc.subjectMatrix-valued functionsen_US
dc.subjectSemismoothnessen_US
dc.subjectGeneralized Jacobianen_US
dc.titleSpectral operators of matrices : semismoothness and characterizations of the generalized Jacobianen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage630en_US
dc.identifier.epage659en_US
dc.identifier.volume30en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1137/18M1222235en_US
dcterms.abstractSpectral operators of matrices proposed recently in [C. Ding, D. F. Sun, J. Sun, and K. C. Toh, Math. Program., 168 (2018), pp. 509{531] are a class of matrix-valued functions, which map matrices to matrices by applying a vector-to-vector function to all eigenvalues/singular values of the underlying matrices. Spectral operators play a crucial role in the study of various applications involving matrices such as matrix optimization problems that include semidefinite programming as one of most important example classes. In this paper, we will study more fundamental first- and second-order properties of spectral operators, including the Lipschitz continuity, ρ-order B(ouligand)-differentiability (0 < ρ≤ 1), ρ-order G-semismoothness (0 < ρ≤ 1), and characteriza- tion of generalized Jacobians.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on optimization, 2020, v. 30, no. 1, p. 630-659en_US
dcterms.isPartOfSIAM journal on optimizationen_US
dcterms.issued2020-
dc.identifier.scopus2-s2.0-85084481450-
dc.identifier.eissn1095-7189en_US
dc.description.validate202305 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberAMA-0200-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextPolyUen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS22973302-
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
18m1222235.pdf486.12 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

107
Citations as of Nov 10, 2025

Downloads

86
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

13
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

13
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.