Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98557
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorBian, Wen_US
dc.creatorChen, Xen_US
dc.date.accessioned2023-05-10T02:00:18Z-
dc.date.available2023-05-10T02:00:18Z-
dc.identifier.issn0036-1429en_US
dc.identifier.urihttp://hdl.handle.net/10397/98557-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2020 Society for Industrial and Applied Mathematicsen_US
dc.rightsThe following publication Bian, W., & Chen, X. (2020). A smoothing proximal gradient algorithm for nonsmooth convex regression with cardinality penalty. SIAM Journal on Numerical Analysis, 58(1), 858-883 is available at https://doi.org/10.1137/18M1186009.en_US
dc.subjectNonsmooth convex regressionen_US
dc.subjectCardinality penaltyen_US
dc.subjectProximal gradient methoden_US
dc.subjectSmoothing methoden_US
dc.subjectGlobal sequence convergenceen_US
dc.titleA smoothing proximal gradient algorithm for nonsmooth convex regression with cardinality penaltyen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage858en_US
dc.identifier.epage883en_US
dc.identifier.volume58en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1137/18M1186009en_US
dcterms.abstractIn this paper, we focus on the constrained sparse regression problem, where the loss function is convex but nonsmooth and the penalty term is defined by the cardinality function. First, we give an exact continuous relaxation problem in the sense that both problems have the same optimal solution set. Moreover, we show that a vector is a local minimizer with the lower bound property of the original problem if and only if it is a lifted stationary point of the relaxation problem. Second, we propose a smoothing proximal gradient (SPG) algorithm for finding a lifted stationary point of the continuous relaxation model. Our algorithm is a novel combination of the classical proximal gradient algorithm and the smoothing method. We prove that the proposed SPG algorithm globally converges to a lifted stationary point of the relaxation problem, has the local convergence rate of o(k - \tau ) with \tau \in (0, 12) on the objective function value, and identifies the zero entries of the lifted stationary point in finite iterations. Finally, we use three examples to illustrate the validity of the continuous relaxation model and good numerical performance of the SPG algorithm.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on numerical analysis, 2020, v. 58, no. 1, p. 858-883en_US
dcterms.isPartOfSIAM journal on numerical analysisen_US
dcterms.issued2020-
dc.identifier.scopus2-s2.0-85084233316-
dc.identifier.eissn1095-7170en_US
dc.description.validate202305 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberAMA-0199-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS25824873-
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
18m1186009.pdf657.58 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

132
Citations as of Nov 10, 2025

Downloads

288
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

66
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

58
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.