Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98555
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorPeng, Den_US
dc.creatorChen, Xen_US
dc.date.accessioned2023-05-10T02:00:17Z-
dc.date.available2023-05-10T02:00:17Z-
dc.identifier.issn1055-6788en_US
dc.identifier.urihttp://hdl.handle.net/10397/98555-
dc.language.isoenen_US
dc.publisherTaylor & Francisen_US
dc.rights© 2019 Informa UK Limited, trading as Taylor & Francis Groupen_US
dc.rightsThis is an Accepted Manuscript of an article published by Taylor & Francis in Optimization Methods and Software on 04 Nov 2019 (published online), available at: http://www.tandfonline.com/10.1080/10556788.2019.1684492.en_US
dc.subjectGroup sparse optimizationen_US
dc.subjectNonconvex and nonsmooth optimizationen_US
dc.subjectComposite folded concave penaltyen_US
dc.subjectDirectional stationary pointen_US
dc.subjectSmoothing methoden_US
dc.titleComputation of second-order directional stationary points for group sparse optimizationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage348en_US
dc.identifier.epage376en_US
dc.identifier.volume35en_US
dc.identifier.issue2en_US
dc.identifier.doi10.1080/10556788.2019.1684492en_US
dcterms.abstractWe consider a nonconvex and nonsmooth group sparse optimization problem where the penalty function is the sum of compositions of a folded concave function and the l2 vector norm for each group variable. We show that under some mild conditions a first-order directional stationary point is a strict local minimizer that fulfils the first-order growth condition, and a second-order directional stationary point is a strong local minimizer that fulfils the second-order growth condition. In order to compute second-order directional stationary points, we construct a twice continuously differentiable smoothing problem and show that any accumulation point of the sequence of second-order stationary points of the smoothing problem is a second-order directional stationary point of the original problem. We give numerical examples to illustrate how to compute a second-order directional stationary point by the smoothing method.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationOptimization methods and software, 2020, v. 35, no. 2, p. 348-376en_US
dcterms.isPartOfOptimization methods and softwareen_US
dcterms.issued2020-
dc.identifier.scopus2-s2.0-85074847771-
dc.identifier.eissn1029-4937en_US
dc.description.validate202305 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAMA-0193-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS27015520-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Chen_Computation_Second-Order_Directional.pdfPre-Published version1 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

85
Citations as of Apr 14, 2025

Downloads

95
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

9
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

5
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.