Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98546
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorJin, Ben_US
dc.creatorZhou, Zen_US
dc.date.accessioned2023-05-10T02:00:13Z-
dc.date.available2023-05-10T02:00:13Z-
dc.identifier.issn2096-6385en_US
dc.identifier.urihttp://hdl.handle.net/10397/98546-
dc.language.isoenen_US
dc.publisherSpringer Singaporeen_US
dc.rights© Shanghai University 2019en_US
dc.rightsThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use (https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s42967-019-00042-9.en_US
dc.subjectSubdiffusionen_US
dc.subjectConvolution quadratureen_US
dc.subjectMultigriden_US
dc.subjectIncomplete iterative schemeen_US
dc.titleMultigrid methods for time-fractional evolution equations : a numerical studyen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage163en_US
dc.identifier.epage177en_US
dc.identifier.volume2en_US
dc.identifier.issue2en_US
dc.identifier.doi10.1007/s42967-019-00042-9en_US
dcterms.abstractIn this work, we develop an efficient iterative scheme for a class of nonlocal evolution models involving a Caputo fractional derivative of order α(0 , 1) in time. The fully discrete scheme is obtained using the standard Galerkin method with conforming piecewise linear finite elements in space and corrected high-order BDF convolution quadrature in time. At each time step, instead of solving the linear algebraic system exactly, we employ a multigrid iteration with a Gauss–Seidel smoother to approximate the solution efficiently. Illustrative numerical results for nonsmooth problem data are presented to demonstrate the approach.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationCommunications on applied mathematics and computation, June 2020, v. 2, no. 2, p. 163-177en_US
dcterms.isPartOfCommunications on applied mathematics and computationen_US
dcterms.issued2020-06-
dc.identifier.scopus2-s2.0-85096562513-
dc.identifier.eissn2661-8893en_US
dc.description.validate202305 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAMA-0168-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS22970782-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Zhou_Multigrid_Methods_Time-Fractional.pdfPre-Published version883.44 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

69
Citations as of Apr 14, 2025

Downloads

71
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

2
Citations as of Sep 12, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.