Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98542
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorLau, PSen_US
dc.creatorLi, CKen_US
dc.creatorPoon, YTen_US
dc.creatorSze, NSen_US
dc.date.accessioned2023-05-10T02:00:11Z-
dc.date.available2023-05-10T02:00:11Z-
dc.identifier.issn2662-2009en_US
dc.identifier.urihttp://hdl.handle.net/10397/98542-
dc.language.isoenen_US
dc.publisherBirkhaeuser Scienceen_US
dc.rights© Tusi Mathematical Research Group (TMRG) 2019en_US
dc.rightsThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use (https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s43036-019-00009-w.en_US
dc.subjectCongruence numerical rangeen_US
dc.subjectStar-shapeden_US
dc.subjectConvexen_US
dc.subjectCompact perturbationen_US
dc.titleJoint matricial range and joint congruence matricial range of operatorsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage609en_US
dc.identifier.epage626en_US
dc.identifier.volume5en_US
dc.identifier.issue3en_US
dc.identifier.doi10.1007/s43036-019-00009-wen_US
dcterms.abstractLet A= (A1, … , Am) , where A1, … , Am are n× n real matrices. The real joint (p, q)-matricial range of A, Λp,qR(A), is the set of m-tuple of q× q real matrices (B1, … , Bm) such that (X∗A1X, … , X∗AmX) = (Ip⊗ B1, … , Ip⊗ Bm) for some real n× pq matrix X satisfying X∗X= Ipq. It is shown that if n is sufficiently large, then the set Λp,qR(A) is non-empty and star-shaped. The result is extended to bounded linear operators acting on a real Hilbert space H, and used to show that the joint essential (p, q)-matricial range of A is always compact, convex, and non-empty. Similar results for the joint congruence matricial ranges on complex operators are also obtained.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationAdvances in operator theory, July 2020, v. 5, no. 3, p. 609-626en_US
dcterms.isPartOfAdvances in operator theoryen_US
dcterms.issued2020-07-
dc.identifier.scopus2-s2.0-85079815834-
dc.identifier.eissn2538-225Xen_US
dc.description.validate202305 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAMA-0158-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextPolyUen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS20681834-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Sze_Joint_Matricial_Range.pdfPre-Published version882.76 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

83
Citations as of Apr 14, 2025

Downloads

50
Citations as of Apr 14, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.