Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98540
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorFeng, ZGen_US
dc.creatorChen, Fen_US
dc.creatorChen, Len_US
dc.creatorYiu, KFCen_US
dc.date.accessioned2023-05-10T02:00:11Z-
dc.date.available2023-05-10T02:00:11Z-
dc.identifier.issn0022-3239en_US
dc.identifier.urihttp://hdl.handle.net/10397/98540-
dc.language.isoenen_US
dc.publisherSpringer New York LLCen_US
dc.rights© Springer Science+Business Media, LLC, part of Springer Nature 2020en_US
dc.rightsThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use (https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s10957-020-01708-8.en_US
dc.subjectSemi-infinite programmingen_US
dc.subjectFixed-point theoremen_US
dc.subjectFilter designen_US
dc.subjectBeamformer designen_US
dc.titleOptimality analysis of a class of semi-infinite programming problemsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage398en_US
dc.identifier.epage411en_US
dc.identifier.volume186en_US
dc.identifier.issue2en_US
dc.identifier.doi10.1007/s10957-020-01708-8en_US
dcterms.abstractIn this paper, we consider a class of semi-infinite programming problems with a parameter. As the parameter increases, we prove that the optimal values decrease monotonically. Moreover, the limit of the sequence of optimal values exists as the parameter tends to infinity. In finding the limit, we decompose the original optimization problem into a series of subproblems. By calculating the maximum optimal values to the subproblems and applying a fixed-point theorem, we prove that the obtained maximum value is exactly the limit of the sequence of optimal values under certain conditions. As a result, the limit can be obtained efficiently by solving a series of simplified subproblems. Numerical examples are provided to verify the limit obtained by the proposed method.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of optimization theory and applications, Aug. 2020, v. 186, no. 2, p. 398-411en_US
dcterms.isPartOfJournal of optimization theory and applicationsen_US
dcterms.issued2020-08-
dc.identifier.scopus2-s2.0-85087559628-
dc.identifier.eissn1573-2878en_US
dc.description.validate202305 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAMA-0156-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextPolyUen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS27009509-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Yiu_Optimality_Analysis_Class.pdfPre-Published version723.22 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

69
Citations as of Apr 14, 2025

Downloads

50
Citations as of Apr 14, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.