Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98537
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorZhang, Yen_US
dc.creatorZhang, Nen_US
dc.creatorSun, Den_US
dc.creatorToh, KCen_US
dc.date.accessioned2023-05-10T02:00:09Z-
dc.date.available2023-05-10T02:00:09Z-
dc.identifier.issn1052-6234en_US
dc.identifier.urihttp://hdl.handle.net/10397/98537-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2020 Society for Industrial and Applied Mathematicsen_US
dc.rightsThe following publication Zhang, Y., Zhang, N., Sun, D., & Toh, K. C. (2020). A proximal point dual newton algorithm for solving group graphical lasso problems. SIAM Journal on Optimization, 30(3), 2197-2220 is available at https://doi.org/10.1137/19M1267830.en_US
dc.subjectGroup graphical Lassoen_US
dc.subjectProximal point algorithmen_US
dc.subjectSemismooth Newton methoden_US
dc.subjectLipschitz continuityen_US
dc.titleA proximal point dual Newton algorithm for solving group graphical Lasso problemsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage2197en_US
dc.identifier.epage2220en_US
dc.identifier.volume30en_US
dc.identifier.issue3en_US
dc.identifier.doi10.1137/19M1267830en_US
dcterms.abstractUndirected graphical models have been especially popular for learning the conditional independence structure among a large number of variables where the observations are drawn independently and identically from the same distribution. However, many modern statistical problems would involve categorical data or time-varying data, which might follow different but related underlying distributions. In order to learn a collection of related graphical models simultaneously, various joint graphical models inducing sparsity in graphs and similarity across graphs have been proposed. In this paper, we aim to propose an implementable proximal point dual Newton algorithm (PPDNA) for solving the group graphical Lasso model, which encourages a shared pattern of sparsity across graphs. Though the group graphical Lasso regularizer is nonpolyhedral, the asymptotic superlinear convergence of our proposed method PPDNA can be obtained by leveraging on the local Lipschitz continuity of the Karush--Kuhn--Tucker solution mapping associated with the group graphical Lasso model. A variety of numerical experiments on real data sets illustrates that the PPDNA for solving the group graphical Lasso model can be highly efficient and robust.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on optimization, 2020, v. 30, no. 3, p. 2197-2220en_US
dcterms.isPartOfSIAM journal on optimizationen_US
dcterms.issued2020-
dc.identifier.scopus2-s2.0-85090959178-
dc.identifier.eissn1095-7189en_US
dc.description.validate202305 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberAMA-0151-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextPolyUen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS54170618-
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
19m1267830.pdf616.29 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

143
Citations as of Nov 10, 2025

Downloads

97
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

7
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

7
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.