Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/98536
| DC Field | Value | Language |
|---|---|---|
| dc.contributor | Department of Applied Mathematics | en_US |
| dc.creator | Li, B | en_US |
| dc.date.accessioned | 2023-05-10T02:00:09Z | - |
| dc.date.available | 2023-05-10T02:00:09Z | - |
| dc.identifier.issn | 0036-1429 | en_US |
| dc.identifier.uri | http://hdl.handle.net/10397/98536 | - |
| dc.language.iso | en | en_US |
| dc.publisher | Society for Industrial and Applied Mathematics | en_US |
| dc.rights | © 2020 Society for Industrial and Applied Mathematics | en_US |
| dc.rights | The following publication Li, B. (2020). Convergence of Dziuk's linearly implicit parametric finite element method for curve shortening flow. SIAM Journal on Numerical Analysis, 58(4), 2315-2333 is available at https://doi.org/10.1137/19M1305483. | en_US |
| dc.subject | Curve shortening flow | en_US |
| dc.subject | Parametric finite element method | en_US |
| dc.subject | Linearly implicit | en_US |
| dc.subject | Conver-gence | en_US |
| dc.subject | Error estimate | en_US |
| dc.title | Convergence of Dziuk's linearly implicit parametric finite element method for curve shortening flow | en_US |
| dc.type | Journal/Magazine Article | en_US |
| dc.identifier.spage | 2315 | en_US |
| dc.identifier.epage | 2333 | en_US |
| dc.identifier.volume | 58 | en_US |
| dc.identifier.issue | 4 | en_US |
| dc.identifier.doi | 10.1137/19M1305483 | en_US |
| dcterms.abstract | Convergence of Dziuk's fully discrete linearly implicit parametric finite element method for curve shortening flow on the plane still remains open since it was proposed in 1991, though the corresponding semidiscrete method with piecewise linear finite elements was proved to be convergent in 1994, while the error analysis for the semidiscrete method cannot be directly extended to higher-order finite elements or full discretization. In this paper, we present an error estimate of Dziuk's fully discrete linearly implicit parametric finite element method for curve shortening flow on the plane for finite elements of polynomial degree r ≥ 3. Numerical experiments are provided to support and complement the theoretical convergence result. | en_US |
| dcterms.accessRights | open access | en_US |
| dcterms.bibliographicCitation | SIAM journal on numerical analysis, 2020, v. 58, no. 4, p. 2315-2333 | en_US |
| dcterms.isPartOf | SIAM journal on numerical analysis | en_US |
| dcterms.issued | 2020 | - |
| dc.identifier.scopus | 2-s2.0-85091143740 | - |
| dc.identifier.eissn | 1095-7170 | en_US |
| dc.description.validate | 202305 bcch | en_US |
| dc.description.oa | Version of Record | en_US |
| dc.identifier.FolderNumber | AMA-0150 | - |
| dc.description.fundingSource | Others | en_US |
| dc.description.fundingText | PolyU | en_US |
| dc.description.pubStatus | Published | en_US |
| dc.identifier.OPUS | 54045259 | - |
| dc.description.oaCategory | VoR allowed | en_US |
| Appears in Collections: | Journal/Magazine Article | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 19m1305483.pdf | 449.73 kB | Adobe PDF | View/Open |
Page views
103
Citations as of Nov 10, 2025
Downloads
114
Citations as of Nov 10, 2025
SCOPUSTM
Citations
18
Citations as of Dec 19, 2025
WEB OF SCIENCETM
Citations
18
Citations as of Dec 18, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



