Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98532
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorXie, Jen_US
dc.creatorZhang, Aen_US
dc.creatorCao, Nen_US
dc.creatorXu, Hen_US
dc.creatorZheng, Ken_US
dc.creatorPoon, YTen_US
dc.creatorSze, NSen_US
dc.creatorXu, Pen_US
dc.creatorZeng, Ben_US
dc.creatorZhang, Len_US
dc.date.accessioned2023-05-10T02:00:08Z-
dc.date.available2023-05-10T02:00:08Z-
dc.identifier.issn0031-9007en_US
dc.identifier.urihttp://hdl.handle.net/10397/98532-
dc.language.isoenen_US
dc.publisherAmerican Physical Societyen_US
dc.rights© 2020 American Physical Societyen_US
dc.rightsThe following publication Xie, J., Zhang, A., Cao, N., Xu, H., Zheng, K., Poon, Y. T., ... & Zhang, L. (2020). Observing geometry of quantum states in a three-level system. Physical Review Letters, 125(15), 150401 is availabe at https://doi.org/10.1103/PhysRevLett.125.150401.en_US
dc.titleObserving geometry of quantum states in a three-level systemen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume125en_US
dc.identifier.issue15en_US
dc.identifier.doi10.1103/PhysRevLett.125.150401en_US
dcterms.abstractIn quantum mechanics, geometry has been demonstrated as a useful tool for inferring nonclassical behaviors and exotic properties of quantum systems. One standard approach to illustrate the geometry of quantum systems is to project the quantum state space onto the Euclidean space via measurements of observables on the system. Despite the great success of this method in studying two-level quantum systems (qubits) with the celebrated Bloch sphere representation, it is still difficult to reveal the geometry of multidimensional quantum systems. Here we report the first experiment measuring the geometry of such projections beyond the qubit. Specifically, we observe the joint numerical ranges of a triple of observables in a three-level photonic system, providing a complete classification of these ranges. We further show that the geometry of different classes reveals ground-state degeneracies of a Hamiltonian as a linear combination of the observables, which is related to quantum phases in the thermodynamic limit. Our results offer a versatile geometric approach for exploring the properties of higher-dimensional quantum systems. © 2020 American Physical Society.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationPhysical review letters, 9 Oct. 2020, v. 125, no. 15, 150401en_US
dcterms.isPartOfPhysical review lettersen_US
dcterms.issued2020-10-09-
dc.identifier.scopus2-s2.0-85093364917-
dc.identifier.pmid33095624-
dc.identifier.eissn1079-7114en_US
dc.identifier.artn150401en_US
dc.description.validate202305 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberAMA-0134-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS50802336-
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
PhysRevLett.125.150401.pdf1.62 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

121
Citations as of Nov 10, 2025

Downloads

122
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

20
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

22
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.