Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98528
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorLi, Zen_US
dc.creatorYiu, KFCen_US
dc.creatorDai, YHen_US
dc.creatorNordholm, Sen_US
dc.date.accessioned2023-05-10T02:00:06Z-
dc.date.available2023-05-10T02:00:06Z-
dc.identifier.issn1051-2004en_US
dc.identifier.urihttp://hdl.handle.net/10397/98528-
dc.language.isoenen_US
dc.publisherAcademic Pressen_US
dc.rights©2020 Elsevier Inc. All rights reserved.en_US
dc.rights© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Li, Z., Yiu, K. F. C., Dai, Y. H., & Nordholm, S. (2020). Distributed LCMV beamformer design by randomly permuted ADMM. Digital Signal Processing, 106, 102820 is available at https://doi.org/10.1016/j.dsp.2020.102820.en_US
dc.subjectDistributed LCMV beamformeren_US
dc.subjectSpeech enhancementen_US
dc.subjectBlockwise optimizationen_US
dc.subjectADMMen_US
dc.subjectRandompermutationen_US
dc.titleDistributed LCMV beamformer design by randomly permuted ADMMen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume106en_US
dc.identifier.doi10.1016/j.dsp.2020.102820en_US
dcterms.abstractIn recent years, distributed beamforming has attracted a lot of attention. Since each node has its own processing power, one significant advantage is the capability of distributed computing. In general, almost all distributed beamforming approaches are solving certain multi-block optimization problems. However, additional conditions are usually required to ensure convergence. In this paper, a new distributed beamforming algorithm is proposed. We first introduce the augmented Lagrangian method to implement the centralized LCMV beamformer design. Then, we propose an effective blockwise optimization method for the design of distributed LCMV beamformer based on the randomly permuted alternating direction method of multiplier (RP-ADMM). The expected convergence is obtained for distributed LCMV beamformer design without additional conditions. Numerical experiments are conducted to illustrate the performance of the proposed method.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationDigital signal processing, Nov. 2020, v. 106, 102820en_US
dcterms.isPartOfDigital signal processingen_US
dcterms.issued2020-11-
dc.identifier.scopus2-s2.0-85089440813-
dc.identifier.eissn1095-4333en_US
dc.identifier.artn102820en_US
dc.description.validate202305 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAMA-0125-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextPolyUen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS27885281-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Yiu_Distributed_Lcmv_Beamformer.pdfPre-Published version1.47 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

82
Citations as of Apr 14, 2025

Downloads

71
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

5
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

2
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.