Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98366
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Logistics and Maritime Studiesen_US
dc.creatorSong, Len_US
dc.creatorYang, Den_US
dc.creatorChin, ATHen_US
dc.creatorZhang, Gen_US
dc.creatorHe, Zen_US
dc.creatorGuan, Wen_US
dc.creatorMao, Ben_US
dc.date.accessioned2023-04-27T01:05:05Z-
dc.date.available2023-04-27T01:05:05Z-
dc.identifier.issn0308-8839en_US
dc.identifier.urihttp://hdl.handle.net/10397/98366-
dc.language.isoenen_US
dc.publisherRoutledge, Taylor & Francis Groupen_US
dc.rights© 2016 Informa UK Limited, trading as Taylor & Francis Groupen_US
dc.rightsThis is an Accepted Manuscript of an article published by Taylor & Francis in Maritime Policy & Management on 13 Oct 2016 (published online), available at: http://www.tandfonline.com/10.1080/03088839.2016.1231427.en_US
dc.subjectBertrand gameen_US
dc.subjectCompetitionen_US
dc.subjectEquilibriumen_US
dc.subjectGame theoryen_US
dc.titleA game-theoretical approach for modeling competitions in a maritime supply chainen_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationTitle on author’s file: A game theoretical approach for modeling competition and cooperation strategy in a maritime supply chainen_US
dc.identifier.spage976en_US
dc.identifier.epage991en_US
dc.identifier.volume43en_US
dc.identifier.issue8en_US
dc.identifier.doi10.1080/03088839.2016.1231427en_US
dcterms.abstractTo accommodate the structural changes in logistics, competitions along a maritime supply chain are more intensive than before. This paper adopts a two-stage noncooperative game-theoretical approach to model the horizontal and vertical interactions among liners and ports. In the first stage, Bertrand game is applied to model the interactions between two liners. When the shipping line decides which port to call, a multinomial Logit model is applied. In the second stage, Bertrand game is applied to model the competitions between two ports. Nash equilibrium is derived by solving the Bertrand games. A numerical example is provided as a case study.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMaritime policy and management, 2016, v. 43, no. 8, p. 976-991en_US
dcterms.isPartOfMaritime policy and managementen_US
dcterms.issued2016-
dc.identifier.scopus2-s2.0-84991037030-
dc.identifier.eissn1464-5254en_US
dc.description.validate202304 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberLMS-0455 [non-PolyU]-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; Beijing Youth Scholar Plan Granten_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6685782-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Yang_Game-Theoretical_Approach_Modeling.pdfPre-Published version1.55 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

61
Citations as of Apr 14, 2025

Downloads

135
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

33
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

25
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.