Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98060
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineeringen_US
dc.creatorHou, Ren_US
dc.creatorWang, Xen_US
dc.creatorXia, Yen_US
dc.date.accessioned2023-04-06T07:55:55Z-
dc.date.available2023-04-06T07:55:55Z-
dc.identifier.issn1475-9217en_US
dc.identifier.urihttp://hdl.handle.net/10397/98060-
dc.language.isoenen_US
dc.publisherSAGE Publicationsen_US
dc.rightsThis is the accepted version of the publication Hou, R., Wang, X., & Xia, Y. (2022). Sparse damage detection via the elastic net method using modal data. Structural Health Monitoring, 21(3), 1076–1092. Copyright © The Author(s) 2021. DOI: 10.1177/14759217211021938en_US
dc.subjectElastic neten_US
dc.subjectGrouping effecten_US
dc.subjectL1 regularizationen_US
dc.subjectL2 regularizationen_US
dc.subjectModal parametersen_US
dc.subjectStructural damage detectionen_US
dc.titleSparse damage detection via the elastic net method using modal dataen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1076en_US
dc.identifier.epage1092en_US
dc.identifier.volume21en_US
dc.identifier.issue3en_US
dc.identifier.doi10.1177/14759217211021938en_US
dcterms.abstractThe l1 regularization technique has been developed for damage detection by utilizing the sparsity feature of structural damage. However, the sensitivity matrix in the damage identification exhibits a strong correlation structure, which does not suffice the independency criteria of the l1 regularization technique. This study employs the elastic net method to solve the problem by combining the l1 and l2 regularization techniques. Moreover, the proposed method enables the grouped structural damage being identified simultaneously, whereas the l1 regularization cannot. A numerical cantilever beam and an experimental three-story frame are utilized to demonstrate the effectiveness of the proposed method. The results showed that the proposed method is able to accurately locate and quantify the single and multiple damages, even when the number of measurement data is much less than the number of elements. In particular, the present elastic net technique can detect the grouped damaged elements accurately, whilst the l1 regularization method cannot.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationStructural health monitoring, May 2022, v. 21, no. 3, p. 1076-1092en_US
dcterms.isPartOfStructural health monitoringen_US
dcterms.issued2022-05-
dc.identifier.scopus2-s2.0-85107293981-
dc.identifier.eissn1741-3168en_US
dc.description.validate202303 bcfcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberCEE-0572-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextKey-Area R&D Program of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation, Chinaen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS52566755-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Xia_Sparse_Damage_Detection.pdfPre-Published version1.03 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

121
Last Week
0
Last month
Citations as of Nov 9, 2025

Downloads

155
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

24
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

24
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.