Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98059
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineeringen_US
dc.creatorZeng, Qen_US
dc.creatorWang, Qen_US
dc.creatorWang, Fen_US
dc.creatorSze, NNen_US
dc.date.accessioned2023-04-06T07:55:55Z-
dc.date.available2023-04-06T07:55:55Z-
dc.identifier.issn2324-9935en_US
dc.identifier.urihttp://hdl.handle.net/10397/98059-
dc.language.isoenen_US
dc.publisherTaylor & Francisen_US
dc.rights© 2021 Hong Kong Society for Transportation Studies Limiteden_US
dc.rightsThis is an Accepted Manuscript of an article published by Taylor & Francis in Transportmetrica A: Transport Science on 10 May 2021 (Published online), available at: http://www.tandfonline.com/10.1080/23249935.2021.1922536.en_US
dc.subjectGeneralized ordered probit modelen_US
dc.subjectInjury severityen_US
dc.subjectLeroux conditional autoregressive prioren_US
dc.subjectSpatial correlationen_US
dc.subjectTraffic crashen_US
dc.titleRevisiting spatial correlation in crash injury severity : a Bayesian generalized ordered probit model with leroux conditional autoregressive prioren_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1084en_US
dc.identifier.epage1102en_US
dc.identifier.volume18en_US
dc.identifier.issue3en_US
dc.identifier.doi10.1080/23249935.2021.1922536en_US
dcterms.abstractTo account for the spatial correlation of crashes that are in close proximity, this study proposes a Bayesian spatial generalized ordered probit (SGOP) model with Leroux conditional autoregressive (CAR) prior for crash severity analysis. Proposed model can accommodate the ordinal nature of injury severity and relax the assumption of monotonic effects of explanatory factors. Additionally, strength of spatial correlation is considered. Results indicate that the proposed SGOP model with Leroux CAR prior outperforms the conventional ordered probit model and SGOP model with intrinsic CAR. There is moderate spatial correlation for the crashes. Results indicate that factors including vehicle type, horizontal curvature, vertical grade, precipitation, visibility, traffic composition, day of the week, crash type, and response time of emergency medical service all affect the crash injury severity. Findings of this study can indicate the effective engineering countermeasures that can mitigate the risk of more severe crashes on the freeways.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationTransportmetrica. A, Transport science, 2022, v. 18, no. 3, p. 1084-1102en_US
dcterms.isPartOfTransportmetrica. A, Transport scienceen_US
dcterms.issued2022-
dc.identifier.scopus2-s2.0-85106316991-
dc.identifier.eissn2324-9943en_US
dc.description.validate202303 bcfcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberCEE-0563-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextInternational Science & Technology Cooperation Program of China; Natural Science Foundation of China; Fundamental Research Funds for the Central Universitiesen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS51983528-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Sze_Revisiting_Spatial_Correlation.pdfPre-Published version452.48 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

126
Last Week
1
Last month
Citations as of Nov 9, 2025

Downloads

150
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

30
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

28
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.