Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98008
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineeringen_US
dc.creatorJitsangiam, Pen_US
dc.creatorNusit, Ken_US
dc.creatorNikraz, Hen_US
dc.creatorLeng, Zen_US
dc.creatorPrommarin, Jen_US
dc.creatorChindaprasirt, Pen_US
dc.date.accessioned2023-04-06T07:55:32Z-
dc.date.available2023-04-06T07:55:32Z-
dc.identifier.issn0899-1561en_US
dc.identifier.urihttp://hdl.handle.net/10397/98008-
dc.language.isoenen_US
dc.publisherAmerican Society of Civil Engineersen_US
dc.rights© 2021 American Society of Civil Engineers.en_US
dc.rightsThis material may be downloaded for personal use only. Any other use requires prior permission of the American Society of Civil Engineers. This material may be found at https://doi.org/10.1061/(ASCE)MT.1943-5533.0003805.en_US
dc.subjectBeneficiationen_US
dc.subjectHot mix asphalt (HMA)en_US
dc.subjectRecycled concrete aggregate (RCA)en_US
dc.subjectUtilizationen_US
dc.titleDense-graded hot mix asphalt with 100% recycled concrete aggregate based on thermal-mechanical surface treatmenten_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume33en_US
dc.identifier.issue7en_US
dc.identifier.doi10.1061/(ASCE)MT.1943-5533.0003805en_US
dcterms.abstractConstruction and demolition (C&D) waste has been annually generated in high volume due to a mega-scale of the construction industry. It causes the environmental problem of waste management requiring numerous landfill disposal areas. C&D waste can be mainly used as recycled concrete aggregate. However, C&D materials are needed for more effective utilization. Applications in road pavement are recommended to overcome this problem. Therefore, this study examined the use of recycled concrete aggregate (RCA) as a full replacement for natural aggregate (NA) in a hot mix asphalt (HMA) mixture for a heavy-duty asphalt surface. A modified thermal-mechanical beneficiation method was employed to improve the RCA abrasion resistance to meet the Los Angeles abrasion (LAA) requirements for HMA aggregates. Then, the heavy-duty dense-graded HMA was mixed with beneficiated RCA (BRCA) (HMA-BRCA). The HMA mixture with NA (HMA-NA) was utilized as a benchmark. A series of laboratory performance tests on the Marshall stability and flow, resilient modulus (MR), dynamic modulus, and tensile strength ratio (TSR) was performed in conjunction with x-ray diffraction (XRD) analysis. Test results revealed that HMA-BRCA demonstrated better Marshall stability and flow and had a better MR than HMA-NA. However, HMA-BRCA and HMA-NA demonstrated almost identical dynamic modulus characteristics. Nevertheless, HMA-BRCA was more susceptible to moisture than HMA-NA, as indicated by the substandard TSR of HMA-BRCA. Further analysis showed that the breakage of BRCA particles during the mixing and compaction processes led to tighter packing of the HMA aggregate matrix, which was the cause for the improved strength, modulus, and deformation characteristics of HMA-BRCA. Furthermore, a relatively thinner asphalt binder film and the presence of calcite (retained from the original mortar) lead to the poor moisture damage resistance of HMA-BRCA. Therefore, moisture susceptibility is an issue when RCA is used in an HMA mixture, even though the RCA was treated to meet all HMA aggregate requirements. A solution by using an antistriping agent would be carefully considered.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of materials in civil engineering, July 2021, v. 33, no. 7, 4021156en_US
dcterms.isPartOfJournal of materials in civil engineeringen_US
dcterms.issued2021-07-
dc.identifier.scopus2-s2.0-85105321775-
dc.identifier.eissn1943-5533en_US
dc.identifier.artn4021156en_US
dc.description.validate202303 bcfcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberCEE-0273-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThailand Research Fund (TRF)en_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS51982631-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Leng_Dense-Graded_Hot_Mix.pdfPre-Published version1.79 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

96
Last Week
2
Last month
Citations as of Nov 9, 2025

Downloads

160
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

12
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

10
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.