Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/97980
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineeringen_US
dc.creatorJin, Zen_US
dc.creatorLi, Zen_US
dc.creatorYin, ZYen_US
dc.creatorKotronis, Pen_US
dc.date.accessioned2023-04-06T07:17:59Z-
dc.date.available2023-04-06T07:17:59Z-
dc.identifier.issn0029-8018en_US
dc.identifier.urihttp://hdl.handle.net/10397/97980-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.rights© 2021 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Jin, Z., Li, Z., Yin, Z.-y., & Kotronis, P. (2021). Numerical modeling of soil–pipe interaction of single pipeline at shallow embedment in clay by hypoplastic macroelement. Ocean Engineering, 241, 110017 is available at https://dx.doi.org/10.1016/j.oceaneng.2021.110017.en_US
dc.subjectClayen_US
dc.subjectHypoplasticityen_US
dc.subjectMacroelementen_US
dc.subjectOffshore engineeringen_US
dc.subjectPipelineen_US
dc.subjectSoil-pipeline interactionen_US
dc.titleNumerical modeling of soil–pipe interaction of single pipeline at shallow embedment in clay by hypoplastic macroelementen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume241en_US
dc.identifier.doi10.1016/j.oceaneng.2021.110017en_US
dcterms.abstractNowadays, the numerical analysis of submarine pipelines of offshore oil and gas industry is a big challenge in engineering design. A simple, fast and accurate numerical tool is proposed in this article based on the macroelement concept. The novel macroelement is within the framework of hypoplasticity and can consider static monotonic combined (multi-directional) loads for shallow embedded pipelines in clay. The incremental nonlinear constitutive formulas are defined in terms of generalized forces and displacements and an enhanced function of failure surface is introduced. A series of empirical formulas are proposed to describe the stiffness variation trends for soil–pipeline interaction. Model predictions show that the proposed macroelement is proved to be an efficient alternative approach compared to the traditional finite element analysis. The computational cost is thus much reduced for the pipeline design.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationOcean engineering, 1 Dec. 2021, v. 241, 110017en_US
dcterms.isPartOfOcean engineeringen_US
dcterms.issued2021-12-01-
dc.identifier.scopus2-s2.0-85117728041-
dc.identifier.artn110017en_US
dc.description.validate202303 bcfcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberCEE-0061-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextSUSTech; Conseil Régional des Pays de la Loireen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS57292694-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Yin_Numerical_Modeling_Soil–Pipe.pdfPre-Published version3.87 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

93
Last Week
3
Last month
Citations as of Nov 9, 2025

Downloads

103
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

10
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

9
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.