Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/97635
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorZu, Cen_US
dc.creatorYang, Xen_US
dc.creatorYu, CKWen_US
dc.date.accessioned2023-03-09T07:42:05Z-
dc.date.available2023-03-09T07:42:05Z-
dc.identifier.issn1547-5816en_US
dc.identifier.urihttp://hdl.handle.net/10397/97635-
dc.language.isoenen_US
dc.publisherAmerican Institute of Mathematical Sciencesen_US
dc.rightsJIMO is published by the American Institute of Mathematical Sciences and sponsored by Curtin University, Zhejiang University, and Chongqing Normal University. All rights reserved.en_US
dc.rightsThis article has been published in a revised form in Journal of Industrial and Management Optimization http://dx.doi.org/10.3934/jimo.2021111. This version is free to download for private research and study only. Not for redistribution, resale or use in derivative works.en_US
dc.subjectLp regularizationen_US
dc.subjectSharpe ratioen_US
dc.subjectShort sellingen_US
dc.subjectSparse mean-variance modelen_US
dc.subjectSparse minimax portfolio selection modelen_US
dc.titleSparse minimax portfolio and sharpe ratio modelsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage3247en_US
dc.identifier.epage3262en_US
dc.identifier.volume18en_US
dc.identifier.issue5en_US
dc.identifier.doi10.3934/jimo.2021111en_US
dcterms.abstractIn this paper, we investigate sparse portfolio selection models with a regularized lp-norm term (0 < p ≤ 1) and negatively bounded shorting constraints. We obtain some basic properties of several linear lp-sparse minimax portfolio models in terms of the regularization parameter. In particular, we introduce an l1-sparse minimax Sharpe ratio model by guaranteeing a positive denominator with a pre-selected parameter and design a parametric algorithm for finding its global solution. We carry out numerical experiments of linear lp-sparse minimax portfolio models with 1200 stocks from Hang Seng Index, Shanghai Securities Composite Index, and NASDAQ Index and compare their performance with lp-sparse mean-variance models. We test the effect of the regularization parameter and the negatively bounded shorting parameter on the level of sparsity, risk, and rate of return respectively and find that portfolios including fewer stocks of the linear lp-sparse minimax models tend to have lower risks and lower rates of return. However, for the lp-sparse mean-variance models, the corresponding changes are not so significant.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of Industrial and Management Optimization, Sept. 2022, v. 18, no. 5, p. 3247-3262en_US
dcterms.isPartOfJournal of industrial and management optimizationen_US
dcterms.issued2022-09-
dc.identifier.isiWOS:000706705400001-
dc.identifier.scopus2-s2.0-85135775091-
dc.identifier.eissn1553-166Xen_US
dc.description.validate202303 bcwwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2176-
dc.identifier.SubFormID46889-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
The_Sparse_Model.pdfPre-Published version2.26 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

85
Citations as of Apr 14, 2025

Downloads

79
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

1
Citations as of Apr 24, 2025

WEB OF SCIENCETM
Citations

1
Citations as of Jun 5, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.