Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/97630
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorInstitute of Textiles and Clothingen_US
dc.creatorYao, Len_US
dc.creatorLin, Jen_US
dc.creatorChen, Yen_US
dc.creatorLi, Xen_US
dc.creatorWang, Den_US
dc.creatorYang, Hen_US
dc.creatorDeng, Len_US
dc.creatorZheng, Zen_US
dc.date.accessioned2023-03-09T07:42:02Z-
dc.date.available2023-03-09T07:42:02Z-
dc.identifier.urihttp://hdl.handle.net/10397/97630-
dc.language.isoenen_US
dc.publisherWiley-VCHen_US
dc.rights© 2021 The Authors. InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.en_US
dc.rightsThis is an open access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, providedthe original work is properly cited.en_US
dc.rightsThe following publication Yao L, Lin J, Chen Y,et al. Supramolecular-mediated ball-in-ball porouscarbon nanospheres for ultrafast energy storage.InfoMat. 2022;4(4):e12278 is available at https://doi.org/10.1002/inf2.12278.en_US
dc.subjectHierarchical porous carbonen_US
dc.subjectPore connectivityen_US
dc.subjectSupramolecularen_US
dc.subjectUltrafast energy storageen_US
dc.titleSupramolecular-mediated ball-in-ball porous carbon nanospheres for ultrafast energy storageen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume4en_US
dc.identifier.issue4en_US
dc.identifier.doi10.1002/inf2.12278en_US
dcterms.abstractHierarchical porous carbons are the most viable electrode material for supercapacitors because of their balanced capacitive performance and chemical stability. Their pore connectivity plays a pivotal role in electrolyte transport, which is quantified by a new parameter, defined in this work as the longest possible pore separation (LPPS). Herein, we report hierarchical porous carbon nanospheres (HPC-NS) with a unique ball-in-ball structure, which is achieved by the pyrolysis of a supramolecular complex of γ-cyclodextrin (γ-CD)/PEO-PPO-PEO (F127). This approach differs from the conventional soft-templating method in that, apart from the assembly of the monomicelles that leads to the host nanospheres (approximately 300 nm), the γ-CD-containing monomicelles themselves are converted to small porous carbon nanospheres (<10 nm), which results in an ultralow LPPS of 10 nm, representing the best-known pore connectivity of the HPC family. The HPC-NS delivers a high specific capacitance (405 F g−1 at 1 A g−1 and 71% capacitance retention at 200 A g−1), wide voltage window (up to 1.6 V), and simultaneously high energy and power densities (24.3 Wh kg−1 at a power density of 151 W kg−1 and 9 Wh kg−1 at 105 W kg−1) in aqueous electrolytes. This new strategy boosts the development of porous carbon electrodes for aqueous supercapacitors with simultaneously high power and energy densities. (Figure presented.).en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationInfoMat, Apr. 2022, v. 4, no. 4, e12278en_US
dcterms.isPartOfInfomaten_US
dcterms.issued2022-04-
dc.identifier.isiWOS:000729315900001-
dc.identifier.scopus2-s2.0-85128079228-
dc.identifier.eissn2567-3165en_US
dc.identifier.artne12278en_US
dc.description.validate202303 bcwwen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOS-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThis work was supported by the Shenzhen Government's Plan of Science and Technology (JCYJ20190808121407676 and 20200813142301001), the Natural Science Foundation of Guangdong (2020A1515011127), the Natural Science Foundation of China (22178223), and the Shenzhen University Initiative Research Program (Grant No. 2019005).en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Yao_Supramolecular-mediated_ball-in-ball_porous.pdf2.27 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

90
Last Week
3
Last month
Citations as of Nov 9, 2025

Downloads

24
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

23
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

26
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.