Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/97565
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building and Real Estateen_US
dc.creatorWang, Yen_US
dc.creatorWu, Cen_US
dc.creatorZu, Ben_US
dc.creatorHan, Men_US
dc.creatorDu, Qen_US
dc.creatorNi, Men_US
dc.creatorJiao, Ken_US
dc.date.accessioned2023-03-06T01:20:09Z-
dc.date.available2023-03-06T01:20:09Z-
dc.identifier.issn0378-7753en_US
dc.identifier.urihttp://hdl.handle.net/10397/97565-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2021 Elsevier B.V. All rights reserved.en_US
dc.rights© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Wang, Y., Wu, C., Zu, B., Han, M., Du, Q., Ni, M., & Jiao, K. (2021). Ni migration of Ni-YSZ electrode in solid oxide electrolysis cell: An integrated model study. Journal of Power Sources, 516, 230660 is available at https://dx.doi.org/10.1016/j.jpowsour.2021.230660.en_US
dc.subjectCell performanceen_US
dc.subjectLattice Boltzmann modelen_US
dc.subjectNi depletionen_US
dc.subjectPhase-field modelen_US
dc.subjectSOECen_US
dc.titleNi migration of Ni-YSZ electrode in solid oxide electrolysis cell : an integrated model studyen_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationTitle on author’s file: Ni Migration of Fuel Electrode in Solid Oxide Electrolysis Cell: An Integrated Model Studyen_US
dc.identifier.volume516en_US
dc.identifier.doi10.1016/j.jpowsour.2021.230660en_US
dcterms.abstractDuring the long-term operation of solid oxide electrolysis cell (SOEC), the coarsening and depletion of the Ni phase of the electrode are found to decrease the cell performance and limit cell durability. In this study, a comprehensive numerical study is conducted to quantitatively evaluate the degradation process in the fuel electrode of SOEC. The phase-field model is adopted to track the Ni phase migration process and generate the electrode structures with Ni depletion. An electrode model based on the lattice Boltzmann method is then used to evaluate the electrochemical performance of the fuel electrode. It is found that the maximum width of the Ni depletion region can reach 3–4 μm. The Ni depletion will aggravate the coarsening of the Ni phase. The corresponding electrochemical evaluation also shows that the randomly distributed ionic particles in the porous fuel electrode lengthens the ion transport path and increases the electrode ohmic overpotential. The Ni depletion also increases the activation overpotential loss due to the reduction of the active reaction sites. The severe Ni depletion can increase the total overpotential by up to 52.8% compared to the initial state. Besides, increasing the wettability of the Ni phase can effectively suppress the reduction of active reaction sites due to Ni coarsening.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of power sources, 31 Dec. 2021, v. 516, 230660en_US
dcterms.isPartOfJournal of power sourcesen_US
dcterms.issued2021-12-31-
dc.identifier.scopus2-s2.0-85117696131-
dc.identifier.eissn1873-2755en_US
dc.identifier.artn230660en_US
dc.description.validate202303 bcwwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberBRE-0012-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS57734697-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Wang_Ni_Migration_Ni-Ysz.pdfPre-Published version2.05 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

128
Last Week
7
Last month
Citations as of Nov 30, 2025

Downloads

229
Citations as of Nov 30, 2025

SCOPUSTM   
Citations

96
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

90
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.