Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/97552
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building and Real Estateen_US
dc.creatorKong, Wen_US
dc.creatorZhu, Ken_US
dc.creatorLu, Xen_US
dc.creatorJin, Jen_US
dc.creatorNi, Men_US
dc.date.accessioned2023-03-06T01:20:03Z-
dc.date.available2023-03-06T01:20:03Z-
dc.identifier.issn2352-152Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/97552-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2021 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Kong, W., et al. (2021). "Enhancement of lithium-ion battery thermal management with the divergent-shaped channel cold plate." Journal of Energy Storage 42: 103027 is available at https://dx.doi.org/10.1016/j.est.2021.103027.en_US
dc.subjectBattery thermal managementen_US
dc.subjectCold plateen_US
dc.subjectDivergent-shaped channelen_US
dc.subjectLiquid coolingen_US
dc.titleEnhancement of lithium-ion battery thermal management with the divergent-shaped channel cold plateen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume42en_US
dc.identifier.doi10.1016/j.est.2021.103027en_US
dcterms.abstractEffective thermal management is critical to the performance and durability of lithium-ion batteries for electric vehicles. As an alternative to conventional cold plates with straight channels, a new cold plate with divergent-shaped channels has been proposed to minimize the maximum temperature and pressure drop. Compared with conventional straight-shaped channels, the divergent-shaped channels exhibit enhanced performance with a higher heat dissipation capacity and lower frictional resistance. To further reduce the local flow resistance, divergent-shaped channels with two inlets and one outlet have been evaluated. This new design can successfully decrease the pressure drop by 7.2% and decrease the maximum temperature difference from 3.99 to 3.19 K. Finally, battery cooling modules with a counter-flow configuration have been constructed, which achieve a smaller maximum temperature difference. This work contributes to the development of effective and efficient battery cooling systems for electric vehicles.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of energy storage, Oct. 2021, v. 42, 103027en_US
dcterms.isPartOfJournal of energy storageen_US
dcterms.issued2021-10-
dc.identifier.scopus2-s2.0-85112597039-
dc.identifier.eissn2352-1538en_US
dc.identifier.artn103027en_US
dc.description.validate202303 bcwwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberBRE-0039-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS54961241-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Ni_Enhancement_Lithium-Ion_Battery.pdfPre-Published version1.04 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

118
Last Week
4
Last month
Citations as of Nov 30, 2025

Downloads

156
Citations as of Nov 30, 2025

SCOPUSTM   
Citations

89
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

82
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.