Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/97493
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building and Real Estateen_US
dc.creatorXu, Hen_US
dc.creatorMa, Jen_US
dc.creatorTan, Pen_US
dc.creatorWu, Zen_US
dc.creatorZhang, Yen_US
dc.creatorNi, Men_US
dc.creatorXuan, Jen_US
dc.date.accessioned2023-03-06T01:19:34Z-
dc.date.available2023-03-06T01:19:34Z-
dc.identifier.issn0196-8904en_US
dc.identifier.urihttp://hdl.handle.net/10397/97493-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.rights© 2021 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Xu, H., Ma, J., Tan, P., Wu, Z., Zhang, Y., Ni, M., & Xuan, J. (2021). Enabling thermal-neutral electrolysis for CO2-to-fuel conversions with a hybrid deep learning strategy. Energy Conversion and Management, 230, 113827 is available at https://doi.org/10.1016/j.enconman.2021.113827.en_US
dc.subjectArtificial intelligenceen_US
dc.subjectCo-electrolysisen_US
dc.subjectGenetic algorithmen_US
dc.subjectHybrid simulationen_US
dc.subjectRenewable energyen_US
dc.subjectSolid oxide electrolyseren_US
dc.titleEnabling thermal-neutral electrolysis for CO₂-to-fuel conversions with a hybrid deep learning strategyen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume230en_US
dc.identifier.doi10.1016/j.enconman.2021.113827en_US
dcterms.abstractHigh-temperature co-electrolysis of CO₂/H₂O through the solid oxide electrolysis cells (SOECs) is a promising method to generate renewable fuels and chemical feedstocks. Applying this technology in flexible scenario, especially when combined with variable renewable powers, requires an efficient optimisation strategy to ensure its safety and cost-effective in the long-term operation. To this purpose, we present a hybrid simulation method for the accurate and fast optimisation of the co-electrolysis process in the SOECs. This method builds multi-physics models based on experimental data and extends the database to develop the deep neural network and genetic algorithm. In the case study, thermal-neutral condition (TNC) is set as the optimisation target in various operating conditions, where the SOEC generates no waste heat and needs no auxiliary heating equipment. Small peak-temperature-gradient (PTG) inside the SOEC is found at the TNC, which is vital to prevent thermal failure in the operation. For the cell operating with 1023 K and 1123 K of inlet gas temperatures, the smallest PTGs reach 0.09 and 0.31 K mm−1 at 1.13 and 1.19 V, respectively. Finally, a 4-D map is presented to show the interactions among the applied voltage, required power density, inlet gas composition, and temperature under the TNC. The proposed method can be flexibly modified based on different optimisation targets for various applications in the energy sector.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationEnergy conversion and management, 15 Feb. 2021, v. 230, 113827en_US
dcterms.isPartOfEnergy conversion and managementen_US
dcterms.issued2021-02-15-
dc.identifier.scopus2-s2.0-85099435543-
dc.identifier.eissn1879-2227en_US
dc.identifier.artn113827en_US
dc.description.validate202303 bcwwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberBRE-0119-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS45839507-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Ni_Enabling_Thermal-Neutral_Electrolysis.pdfPre-Published version1.57 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

90
Last Week
1
Last month
Citations as of Nov 30, 2025

Downloads

90
Citations as of Nov 30, 2025

SCOPUSTM   
Citations

36
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

33
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.