Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/97492
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building and Real Estateen_US
dc.creatorChen, Zen_US
dc.creatorYu, Wen_US
dc.creatorLiu, Yen_US
dc.creatorZeng, Yen_US
dc.creatorHe, Qen_US
dc.creatorTan, Pen_US
dc.creatorNi, Men_US
dc.date.accessioned2023-03-06T01:19:33Z-
dc.date.available2023-03-06T01:19:33Z-
dc.identifier.issn1385-8947en_US
dc.identifier.urihttp://hdl.handle.net/10397/97492-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2020 Elsevier B.V. All rights reserved.en_US
dc.rights© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Chen, Z., Yu, W., Liu, Y., Zeng, Y., He, Q., Tan, P., & Ni, M. (2021). Mathematical modeling and numerical analysis of alkaline zinc-iron flow batteries for energy storage applications. Chemical Engineering Journal, 405, 126684 is available at https://doi.org/10.1016/j.cej.2020.126684.en_US
dc.subjectAqueous electrolyteen_US
dc.subjectDesign optimizationen_US
dc.subjectNumerical simulationen_US
dc.subjectZinc-iron flow batteryen_US
dc.titleMathematical modeling and numerical analysis of alkaline zinc-iron flow batteries for energy storage applicationsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume405en_US
dc.identifier.doi10.1016/j.cej.2020.126684en_US
dcterms.abstractThe alkaline zinc-iron flow battery is an emerging electrochemical energy storage technology with huge potential, while the theoretical investigations are still absent, limiting performance improvement. A transient and two-dimensional mathematical model of the charge/discharge behaviors of zinc-iron flow batteries is established. After validated by experimental data, numerical analysis is carried out focusing on the influences of electrolyte flow rate and electrode geometry towards the electrochemical performance. The results demonstrate that a high flow rate, high electrode thickness, and porosity are favorable for battery performance. Following this finding, the parameters of a zinc-iron flow battery are optimized by utilizing a high flow rate of 50 mL min−1, an asymmetrical structure with a negative electrode of 7 mm and a positive electrode of 10 mm, and high porosity of 0.98. With the optimal flow rate and geometry, the electrolyte utilization, coulombic efficiency, and energy efficiency attain 98.62%, 99.18%, and 92.84%, respectively, significantly higher than those of the un-optimized design. This work provides a comprehensive strategy allowing for the improvement of the practical design of zinc-iron flow batteries.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationChemical engineering journal, 1 Feb. 2021, v. 405, 126684en_US
dcterms.isPartOfChemical engineering journalen_US
dcterms.issued2021-02-01-
dc.identifier.scopus2-s2.0-85089904420-
dc.identifier.artn126684en_US
dc.description.validate202303 bcww-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberBRE-0125-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS38877722-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
He_Mathematical_Modeling_Numerical.pdfPre-Published version1.86 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

114
Last Week
10
Last month
Citations as of Nov 30, 2025

Downloads

245
Citations as of Nov 30, 2025

SCOPUSTM   
Citations

62
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

58
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.