Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/97474
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building and Real Estateen_US
dc.creatorXia, Len_US
dc.creatorZhang, Cen_US
dc.creatorChen, Jen_US
dc.creatorChen, Len_US
dc.creatorNi, Men_US
dc.creatorDeng, Ben_US
dc.creatorXu, Jen_US
dc.date.accessioned2023-03-06T01:19:22Z-
dc.date.available2023-03-06T01:19:22Z-
dc.identifier.issn1543-5075en_US
dc.identifier.urihttp://hdl.handle.net/10397/97474-
dc.language.isoenen_US
dc.publisherTaylor & Francisen_US
dc.rights© 2021 Taylor & Francis Group, LLCen_US
dc.rightsThis is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of Green Energy on 2021-08-30 (published online), available at: http://www.tandfonline.com/10.1080/15435075.2021.1960354.en_US
dc.subjectDoping levelen_US
dc.subjectDynamic equilibriumen_US
dc.subjectHT-PEMFCen_US
dc.subjectMembrane materialen_US
dc.subjectVapor distributionen_US
dc.titleNumerical study of vapor behavior in high temperature PEM fuel cell under key material and operating parametersen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage707en_US
dc.identifier.epage718en_US
dc.identifier.volume19en_US
dc.identifier.issue7en_US
dc.identifier.doi10.1080/15435075.2021.1960354en_US
dcterms.abstractThe water issue of high-temperature proton exchange membrane fuel cell (HT-PEMFC) is rarely studied in the previous work. However, the different water vapor behaviors might greatly influence both cell performance and stability. In order to gain a fundamental understanding of the vapor behaviors in HT-PEMFC, a 3D computational fluid dynamics model and a 2D transient model were developed to investigate the effects of materials properties and operating parameters on the vapor behavior. Temperature, membrane materials, and phosphoric acid doping degrees are examined. The results show that higher temperature and phosphoric acid doping degrees with PBI membrane would lead to a significant increase of water vapor generation at cathode. For the transient model, the dynamics of vapor accumulation were observed with the dead-end anode. It is revealed that vapor transport and distribution get adapted to a dynamic equilibrium after 18 sec. According to these results, a periodic purging at anode with optimized purging time is still needed to remove the accumulated water vapor. The findings of this paper can be further applied in the design of fuel cell controller.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationInternational journal of green energy, 2022, v. 19, no. 7, p. 707-718en_US
dcterms.isPartOfInternational journal of green energyen_US
dcterms.issued2022-
dc.identifier.scopus2-s2.0-85113779477-
dc.identifier.eissn1543-5083en_US
dc.description.validate202303 bcwwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberBRE-0195-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS55585891-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Ni_Numerical_Study_Vapor.pdfPre-Published version2.6 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

96
Last Week
2
Last month
Citations as of Nov 30, 2025

Downloads

154
Citations as of Nov 30, 2025

SCOPUSTM   
Citations

5
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

5
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.