Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/97445
| DC Field | Value | Language |
|---|---|---|
| dc.contributor | Department of Civil and Environmental Engineering | en_US |
| dc.creator | Cao, S | en_US |
| dc.creator | Xue, G | en_US |
| dc.creator | Yilmaz, E | en_US |
| dc.creator | Yin, Z | en_US |
| dc.creator | Yang, F | en_US |
| dc.date.accessioned | 2023-03-06T01:18:34Z | - |
| dc.date.available | 2023-03-06T01:18:34Z | - |
| dc.identifier.issn | 0959-6526 | en_US |
| dc.identifier.uri | http://hdl.handle.net/10397/97445 | - |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier | en_US |
| dc.rights | © 2020 Elsevier Ltd. All rights reserved. | en_US |
| dc.rights | © 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/. | en_US |
| dc.rights | The following publication Cao, S., Xue, G., Yilmaz, E., Yin, Z., & Yang, F. (2021). Utilizing concrete pillars as an environmental mining practice in underground mines. Journal of Cleaner Production, 278, 123433 is available at https://doi.org/10.1016/j.jclepro.2020.123433. | en_US |
| dc.subject | Compressive strength | en_US |
| dc.subject | Computed tomography | en_US |
| dc.subject | Environmental mining practice | en_US |
| dc.subject | Fiber reinforced concrete | en_US |
| dc.subject | Numerical simulation | en_US |
| dc.subject | Ore pillar recovery | en_US |
| dc.title | Utilizing concrete pillars as an environmental mining practice in underground mines | en_US |
| dc.type | Journal/Magazine Article | en_US |
| dc.identifier.volume | 278 | en_US |
| dc.identifier.doi | 10.1016/j.jclepro.2020.123433 | en_US |
| dcterms.abstract | Ground control is an integral element of mine design and worker safety. The use of concrete pillars for underground mines is of paramount importance to maintaining the economic and operational security of structures. This paper deals with the use of fiber-reinforced concrete (FRC) as pillars via laboratory and field tests. The strength performance of prepared concrete reinforced with glass, polypropylene and polyacrylonitrile fibers was researched by a mechanical press and a computed tomography (CT) tool. Samples were tested for fiber volume fractions of 0, 0.4, 0.8 and 1.2 wt%, respectively. Results have indicated that, with the addition of fibers, the strength was improved first due to a bridging effect and then decreased due to a pull-out effect. Compared to the reference sample, the absorbed energy prevents FRC from deterioration by mechanisms of matrix cracking, fiber-matrix interface debonding and fiber rupture. The peak strains of FRC linearly rise with increasing fiber. The gray value distribution curves have also good correspondence with 2D CT pore and crack distributions, which reveal that gray value processing could depict the structural behavior of concretes reinforced with or without fiber. Theoretical analyses show that the pillar remains stable for sustainable mining. Besides, the location and size of FRC pillars are suitable for numerical calculations of the trial stope. The findings of this study can offer a key reference for the orebody pillar recovery in underground mines. | en_US |
| dcterms.accessRights | open access | en_US |
| dcterms.bibliographicCitation | Journal of cleaner production, 1 Jan. 2021, v. 278, 123433 | en_US |
| dcterms.isPartOf | Journal of cleaner production | en_US |
| dcterms.issued | 2021-01-01 | - |
| dc.identifier.scopus | 2-s2.0-85089508193 | - |
| dc.identifier.artn | 123433 | en_US |
| dc.description.validate | 202203 bcfc | en_US |
| dc.description.oa | Accepted Manuscript | en_US |
| dc.identifier.FolderNumber | CEE-0488 | - |
| dc.description.fundingSource | Others | en_US |
| dc.description.fundingText | LNM; NSFC; FRC; | en_US |
| dc.description.pubStatus | Published | en_US |
| dc.identifier.OPUS | 28938254 | - |
| dc.description.oaCategory | Green (AAM) | en_US |
| Appears in Collections: | Journal/Magazine Article | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Yin_Utilizing_Concrete_Pillars.pdf | Pre-Published version | 2.63 MB | Adobe PDF | View/Open |
Page views
68
Last Week
2
2
Last month
Citations as of Nov 9, 2025
Downloads
292
Citations as of Nov 9, 2025
SCOPUSTM
Citations
84
Citations as of Dec 19, 2025
WEB OF SCIENCETM
Citations
78
Citations as of Dec 18, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



