Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/97439
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineeringen_US
dc.creatorZhang, LLen_US
dc.creatorZheng, YYen_US
dc.creatorWei, PCen_US
dc.creatorDiao, QFen_US
dc.creatorYin, ZYen_US
dc.date.accessioned2023-03-06T01:18:30Z-
dc.date.available2023-03-06T01:18:30Z-
dc.identifier.issn0169-1317en_US
dc.identifier.urihttp://hdl.handle.net/10397/97439-
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.rights© 2020 Elsevier B.V. All rights reserved.en_US
dc.rights© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Zhang, L. L., Zheng, Y. Y., Wei, P. C., Diao, Q. F., & Yin, Z. Y. (2021). Nanoscale mechanical behavior of kaolinite under uniaxial strain conditions. Applied Clay Science, 201, 105961 is available at https://doi.org/10.1016/j.clay.2020.105961.en_US
dc.subjectBendingen_US
dc.subjectCompressionen_US
dc.subjectKaoliniteen_US
dc.subjectMechanical behaviorsen_US
dc.subjectMolecular dynamicsen_US
dc.subjectTensionen_US
dc.titleNanoscale mechanical behavior of kaolinite under uniaxial strain conditionsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume201en_US
dc.identifier.doi10.1016/j.clay.2020.105961en_US
dcterms.abstractNanoscale mechanical behavior of kaolinite as a fundamental failure mechanism has been investigated under uniaxial tension and compression using Molecular Dynamics (MD) simulation methods. External deformation has been applied on kaolinite with a strain rate of 5 × 10−7fs−1 for tensile and compressive tests in the directions parallel (x-, y-direction)/perpendicular (z-direction) to clay mineral layers. Results showed that better mechanical performance was presented in the directions parallel to clay mineral layers than the other direction due to its continuous lattice in this plane. However, the elastic modulus of kaolinite in the z-direction was almost half of that in the other directions, which nearly equals the overall elastic modulus of kaolinite with a value of about 72.6 GPa. Compression in the x- and y-directions resulted in the separation of clay mineral layers then bending toward the octahedral sheet till crack. Compression in the z-direction resulted in slippage of clay mineral layers at the first fracture then resistance till the second fracture at the strain of about 0.2. Tension would cause cracks in the direction perpendicular to the strain direction, which may be a cleavage fracture or cracks in clay mineral sheets. Different failure modes under tension and compression were originated from the layered structure of kaolinite.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationApplied clay science, Feb. 2021, v. 201, 105961en_US
dcterms.isPartOfApplied clay scienceen_US
dcterms.issued2021-02-
dc.identifier.scopus2-s2.0-85099242767-
dc.identifier.eissn1872-9053en_US
dc.identifier.artn105961en_US
dc.description.validate202203 bcfcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberCEE-0459-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNSFCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS43052635-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Yin_Nanoscale_Mechanical_Behavior.pdfPre-Published version2.09 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

127
Last Week
0
Last month
Citations as of Dec 21, 2025

Downloads

273
Citations as of Dec 21, 2025

SCOPUSTM   
Citations

58
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

54
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.