Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/97385
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineering-
dc.creatorXiong, Hen_US
dc.creatorYin, ZYen_US
dc.creatorNicot, Fen_US
dc.creatorWautier, Aen_US
dc.creatorMarie, Men_US
dc.creatorDarve, Fen_US
dc.creatorVeylon, Gen_US
dc.creatorPhilippe, Pen_US
dc.date.accessioned2023-03-06T01:17:58Z-
dc.date.available2023-03-06T01:17:58Z-
dc.identifier.issn1861-1125en_US
dc.identifier.urihttp://hdl.handle.net/10397/97385-
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rights© Springer-Verlag GmbH Germany, part of Springer Nature 2021en_US
dc.rightsThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use (https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s11440-020-01113-5en_US
dc.subjectGranular collapseen_US
dc.subjectGranular materialen_US
dc.subjectMeso-scaleen_US
dc.subjectMicromechanicsen_US
dc.subjectMultiscale approachen_US
dc.subjectSmoothed particle hydrodynamics (SPH)en_US
dc.titleA novel multi-scale large deformation approach for modelling of granular collapseen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage2371en_US
dc.identifier.epage2388en_US
dc.identifier.volume16en_US
dc.identifier.issue8en_US
dc.identifier.doi10.1007/s11440-020-01113-5en_US
dcterms.abstractCollapse of granular material is usually accompanied by long run-out granular flows in natural hazards, e.g. rock/debris flow and snow avalanches. This paper presents a novel multi-scale approach for modelling granular column collapse with large deformation. This approach employs the smoothed particle hydrodynamics (SPH) method to solve large deformation boundary value problems, while using a micromechanical model to derive the nonlinear material response required by the SPH method. After examining the effect of initial cell size, the proposed approach is subsequently applied to simulate the flow of granular column in a rectangular channel at a low water content by varying the initial aspect ratio. The numerical results show good agreement with various experimental observations on both collapse process and final deposit morphology. Furthermore, the meso-scale behaviour is also captured owing to the advantages of the micromechanical model. Finally, it was demonstrated that the novel multi-scale approach is helpful in improving the understanding of granular collapse and should be an effective computational tool for the analysis of real-scale granular flow.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationActa geotechnica, Aug. 2021, v. 16, no. 8, p. 2371-2388en_US
dcterms.isPartOfActa geotechnicaen_US
dcterms.issued2021-08-
dc.identifier.scopus2-s2.0-85099039741-
dc.identifier.eissn1861-1133en_US
dc.description.validate202203 bcfc-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberCEE-0232-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextCNRSen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS42461200-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Yin_Novel_Multi-Scale_Large.pdfPre-Published version3.6 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

85
Last Week
2
Last month
Citations as of Nov 9, 2025

Downloads

165
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

37
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

37
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.