Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/97381
| DC Field | Value | Language |
|---|---|---|
| dc.contributor | Department of Civil and Environmental Engineering | en_US |
| dc.creator | Zhou, Y | en_US |
| dc.creator | Xia, Y | en_US |
| dc.creator | Fujino, Y | en_US |
| dc.date.accessioned | 2023-03-06T01:17:57Z | - |
| dc.date.available | 2023-03-06T01:17:57Z | - |
| dc.identifier.issn | 0141-0296 | en_US |
| dc.identifier.uri | http://hdl.handle.net/10397/97381 | - |
| dc.language.iso | en | en_US |
| dc.publisher | Pergamon Press | en_US |
| dc.rights | © 2021 Elsevier Ltd. All rights reserved. | en_US |
| dc.rights | © 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/. | en_US |
| dc.rights | The following publication Zhou, Y., et al. (2021). "Analytical formulas of beam deflection due to vertical temperature difference." Engineering Structures 240: 112366 is available at https://dx.doi.org/10.1016/j.engstruct.2021.112366. | en_US |
| dc.subject | Analytical formula | en_US |
| dc.subject | Beam | en_US |
| dc.subject | Deflection | en_US |
| dc.subject | Mechanism | en_US |
| dc.subject | Vertical temperature difference | en_US |
| dc.title | Analytical formulas of beam deflection due to vertical temperature difference | en_US |
| dc.type | Journal/Magazine Article | en_US |
| dc.identifier.volume | 240 | en_US |
| dc.identifier.doi | 10.1016/j.engstruct.2021.112366 | en_US |
| dcterms.abstract | This paper presents unified analytical formulas to calculate the vertical temperature difference induced deflection of a prismatic beam with any number of spans. The influences of the structural geometry, material property, and temperature change on the beam deflection are investigated through detailed parametric analysis. A beam with odd-numbered spans has distinct thermal deformation characteristics from that with even-numbered spans. For an equal-span continuous beam, the outermost spans on both ends undergo the largest deformation due to the vertical temperature difference, while the middlemost spans the least. The mid-span deflection of each span converges quickly to the limit value with the increase of the total span number n. The limits for the outermost and middlemost spans are respectively D0·3-1/2 and zero, where D0 is the thermal deflection at mid-span of a simply supported beam with the same span length. This study enhances the understanding of the thermal behaviour of beams. | en_US |
| dcterms.accessRights | open access | en_US |
| dcterms.bibliographicCitation | Engineering structures, 1 Aug. 2021, v. 240, 112366 | en_US |
| dcterms.isPartOf | Engineering structures | en_US |
| dcterms.issued | 2021-08-01 | - |
| dc.identifier.scopus | 2-s2.0-85105694723 | - |
| dc.identifier.eissn | 1873-7323 | en_US |
| dc.identifier.artn | 112366 | en_US |
| dc.description.validate | 202203 bcfc | en_US |
| dc.description.oa | Accepted Manuscript | en_US |
| dc.identifier.FolderNumber | CEE-0224 | - |
| dc.description.fundingSource | Others | en_US |
| dc.description.fundingText | Hong Kong Scholars Program; Interdisciplinary Research Project for Young Teachers of USTB; Hong Kong PolyU | en_US |
| dc.description.pubStatus | Published | en_US |
| dc.identifier.OPUS | 50034078 | - |
| dc.description.oaCategory | Green (AAM) | en_US |
| Appears in Collections: | Journal/Magazine Article | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| XIA_Analytical_Formulas_Beam.pdf | Pre-Published version | 1.09 MB | Adobe PDF | View/Open |
Page views
138
Last Week
3
3
Last month
Citations as of Nov 9, 2025
Downloads
246
Citations as of Nov 9, 2025
SCOPUSTM
Citations
18
Citations as of Dec 19, 2025
WEB OF SCIENCETM
Citations
16
Citations as of Dec 18, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



