Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/97381
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineeringen_US
dc.creatorZhou, Yen_US
dc.creatorXia, Yen_US
dc.creatorFujino, Yen_US
dc.date.accessioned2023-03-06T01:17:57Z-
dc.date.available2023-03-06T01:17:57Z-
dc.identifier.issn0141-0296en_US
dc.identifier.urihttp://hdl.handle.net/10397/97381-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.rights© 2021 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Zhou, Y., et al. (2021). "Analytical formulas of beam deflection due to vertical temperature difference." Engineering Structures 240: 112366 is available at https://dx.doi.org/10.1016/j.engstruct.2021.112366.en_US
dc.subjectAnalytical formulaen_US
dc.subjectBeamen_US
dc.subjectDeflectionen_US
dc.subjectMechanismen_US
dc.subjectVertical temperature differenceen_US
dc.titleAnalytical formulas of beam deflection due to vertical temperature differenceen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume240en_US
dc.identifier.doi10.1016/j.engstruct.2021.112366en_US
dcterms.abstractThis paper presents unified analytical formulas to calculate the vertical temperature difference induced deflection of a prismatic beam with any number of spans. The influences of the structural geometry, material property, and temperature change on the beam deflection are investigated through detailed parametric analysis. A beam with odd-numbered spans has distinct thermal deformation characteristics from that with even-numbered spans. For an equal-span continuous beam, the outermost spans on both ends undergo the largest deformation due to the vertical temperature difference, while the middlemost spans the least. The mid-span deflection of each span converges quickly to the limit value with the increase of the total span number n. The limits for the outermost and middlemost spans are respectively D0·3-1/2 and zero, where D0 is the thermal deflection at mid-span of a simply supported beam with the same span length. This study enhances the understanding of the thermal behaviour of beams.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationEngineering structures, 1 Aug. 2021, v. 240, 112366en_US
dcterms.isPartOfEngineering structuresen_US
dcterms.issued2021-08-01-
dc.identifier.scopus2-s2.0-85105694723-
dc.identifier.eissn1873-7323en_US
dc.identifier.artn112366en_US
dc.description.validate202203 bcfcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberCEE-0224-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextHong Kong Scholars Program; Interdisciplinary Research Project for Young Teachers of USTB; Hong Kong PolyUen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS50034078-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
XIA_Analytical_Formulas_Beam.pdfPre-Published version1.09 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

138
Last Week
3
Last month
Citations as of Nov 9, 2025

Downloads

246
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

18
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

16
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.