Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/97204
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorXu, ZQen_US
dc.date.accessioned2023-02-17T00:58:45Z-
dc.date.available2023-02-17T00:58:45Z-
dc.identifier.issn0022-247Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/97204-
dc.descriptionPlease note a correction has been issued for this article.en_US
dc.descriptionCorrigendum to “A new characterization of comonotonicity and its application in behavioral finance” [J. Math. Anal. Appl. 418 (2014) 612–625] Journal of Mathematical Analysis and Applications, Volume 420, Issue 2, 15 December 2014, Pages 1864-1865en_US
dc.descriptionhttps://doi.org/10.1016/j.jmaa.2014.06.080en_US
dc.language.isoenen_US
dc.publisherAcademic Pressen_US
dc.rights© 2014 Elsevier Inc. All rights reserved.en_US
dc.rights© 2014. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Xu, Z. Q. (2014). A new characterization of comonotonicity and its application in behavioral finance. Journal of Mathematical Analysis and Applications, 418(2), 612-625 is available at https://doi.org/10.1016/j.jmaa.2014.03.053.en_US
dc.subjectAtomless/non-atomicen_US
dc.subjectBehavioral financeen_US
dc.subjectComonotonicityen_US
dc.subjectCumulative prospect theoryen_US
dc.subjectEconomic equilibrium modelen_US
dc.subjectPricing kernelen_US
dc.subjectQuantile formulationen_US
dc.subjectRank-dependent utility theoryen_US
dc.titleA new characterization of comonotonicity and its application in behavioral financeen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage612en_US
dc.identifier.epage625en_US
dc.identifier.volume418en_US
dc.identifier.issue2en_US
dc.identifier.doi10.1016/j.jmaa.2014.03.053en_US
dcterms.abstractIt is well-known that an Rn-valued random vector (X1, X2, ⋯, Xn) is comonotonic if and only if (X1, X2, ⋯, Xn) and (Q1(U), Q2(U), ⋯, Qn(U)) coincide in distribution, for any random variable U uniformly distributed on the unit interval (0, 1), where Qk(·) are the quantile functions of Xk, k=1, 2, ⋯, n. It is natural to ask whether (X1, X2, ⋯, Xn) and (Q1(U), Q2(U), ⋯, Qn(U)) can coincide almost surely for some special U. In this paper, we give a positive answer to this question by construction. We then apply this result to a general behavioral investment model with a law-invariant preference measure and develop a universal framework to link the problem to its quantile formulation. We show that any optimal investment output should be anti-comonotonic with the market pricing kernel. Unlike previous studies, our approach avoids making the assumption that the pricing kernel is atomless, and consequently, we overcome one of the major difficulties encountered when one considers behavioral economic equilibrium models in which the pricing kernel is a yet-to-be-determined unknown random variable. The method is applicable to general models such as risk sharing model.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of mathematical analysis and applications, 15 Oct. 2014, v. 418, no. 2, p. 612-625en_US
dcterms.isPartOfJournal of mathematical analysis and applicationsen_US
dcterms.issued2014-10-15-
dc.identifier.scopus2-s2.0-84900538661-
dc.identifier.eissn1096-0813en_US
dc.description.validate202302 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera1917-
dc.identifier.SubFormID46122-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Xu_New_Characterization_Comonotonicity.pdfPre-Published version1.08 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

73
Citations as of Apr 14, 2025

Downloads

44
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

24
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

19
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.