Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/97202
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorGao, Xen_US
dc.creatorXu, ZQen_US
dc.creatorZhou, XYen_US
dc.date.accessioned2023-02-17T00:58:44Z-
dc.date.available2023-02-17T00:58:44Z-
dc.identifier.issn0363-0129en_US
dc.identifier.urihttp://hdl.handle.net/10397/97202-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2022 Society for Industrial and Applied Mathematicsen_US
dc.rightsThe following publication Gao, X., Xu, Z. Q., & Zhou, X. Y. (2022). State-dependent temperature control for Langevin diffusions. SIAM Journal on Control and Optimization, 60(3), 1250-1268 is available at https://doi.org/10.1137/21M1429424.en_US
dc.subjectBoltzmann explorationen_US
dc.subjectEntropy regularizationen_US
dc.subjectHJB equationen_US
dc.subjectLangevin diffusionen_US
dc.subjectNonconvex optimizationen_US
dc.subjectStochastic relaxed controlen_US
dc.titleState-dependent temperature control for Langevin diffusionsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1250en_US
dc.identifier.epage1268en_US
dc.identifier.volume60en_US
dc.identifier.issue3en_US
dc.identifier.doi10.1137/21M1429424en_US
dcterms.abstractWe study the temperature control problem for Langevin diffusions in the context of nonconvex optimization. The classical optimal control of such a problem is of the bang-bang type, which is overly sensitive to errors. A remedy is to allow the diffusions to explore other temperature values and hence smooth out the bang-bang control. We accomplish this by a stochastic relaxed control formulation incorporating randomization of the temperature control and regularizing its entropy. We derive a state-dependent, truncated exponential distribution, which can be used to sample temperatures in a Langevin algorithm, in terms of the solution to an Hamilton-Jacobi-Bellman partial differential equation. We carry out a numerical experiment on a one-dimensional baseline example, in which the Hamilton-Jacobi-Bellman equation can be easily solved, to compare the performance of the algorithm with three other available algorithms in search of a global optimum.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on control and optimization, 2022, v. 60, no. 3, p. 1250-1268en_US
dcterms.isPartOfSIAM journal on control and optimizationen_US
dcterms.issued2022-
dc.identifier.isiWOS:000809668500001-
dc.identifier.scopus2-s2.0-85130588585-
dc.identifier.eissn1095-7138en_US
dc.description.validate202302 bckwen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera1917, AMA-0113, a2099-
dc.identifier.SubFormID45034, 46120, 46592-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS54195550-
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
21m1429424.pdf509.75 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

110
Last Week
21
Last month
Citations as of Nov 10, 2025

Downloads

145
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

11
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

11
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.