Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/97202
| DC Field | Value | Language |
|---|---|---|
| dc.contributor | Department of Applied Mathematics | en_US |
| dc.creator | Gao, X | en_US |
| dc.creator | Xu, ZQ | en_US |
| dc.creator | Zhou, XY | en_US |
| dc.date.accessioned | 2023-02-17T00:58:44Z | - |
| dc.date.available | 2023-02-17T00:58:44Z | - |
| dc.identifier.issn | 0363-0129 | en_US |
| dc.identifier.uri | http://hdl.handle.net/10397/97202 | - |
| dc.language.iso | en | en_US |
| dc.publisher | Society for Industrial and Applied Mathematics | en_US |
| dc.rights | © 2022 Society for Industrial and Applied Mathematics | en_US |
| dc.rights | The following publication Gao, X., Xu, Z. Q., & Zhou, X. Y. (2022). State-dependent temperature control for Langevin diffusions. SIAM Journal on Control and Optimization, 60(3), 1250-1268 is available at https://doi.org/10.1137/21M1429424. | en_US |
| dc.subject | Boltzmann exploration | en_US |
| dc.subject | Entropy regularization | en_US |
| dc.subject | HJB equation | en_US |
| dc.subject | Langevin diffusion | en_US |
| dc.subject | Nonconvex optimization | en_US |
| dc.subject | Stochastic relaxed control | en_US |
| dc.title | State-dependent temperature control for Langevin diffusions | en_US |
| dc.type | Journal/Magazine Article | en_US |
| dc.identifier.spage | 1250 | en_US |
| dc.identifier.epage | 1268 | en_US |
| dc.identifier.volume | 60 | en_US |
| dc.identifier.issue | 3 | en_US |
| dc.identifier.doi | 10.1137/21M1429424 | en_US |
| dcterms.abstract | We study the temperature control problem for Langevin diffusions in the context of nonconvex optimization. The classical optimal control of such a problem is of the bang-bang type, which is overly sensitive to errors. A remedy is to allow the diffusions to explore other temperature values and hence smooth out the bang-bang control. We accomplish this by a stochastic relaxed control formulation incorporating randomization of the temperature control and regularizing its entropy. We derive a state-dependent, truncated exponential distribution, which can be used to sample temperatures in a Langevin algorithm, in terms of the solution to an Hamilton-Jacobi-Bellman partial differential equation. We carry out a numerical experiment on a one-dimensional baseline example, in which the Hamilton-Jacobi-Bellman equation can be easily solved, to compare the performance of the algorithm with three other available algorithms in search of a global optimum. | en_US |
| dcterms.accessRights | open access | en_US |
| dcterms.bibliographicCitation | SIAM journal on control and optimization, 2022, v. 60, no. 3, p. 1250-1268 | en_US |
| dcterms.isPartOf | SIAM journal on control and optimization | en_US |
| dcterms.issued | 2022 | - |
| dc.identifier.isi | WOS:000809668500001 | - |
| dc.identifier.scopus | 2-s2.0-85130588585 | - |
| dc.identifier.eissn | 1095-7138 | en_US |
| dc.description.validate | 202302 bckw | en_US |
| dc.description.oa | Version of Record | en_US |
| dc.identifier.FolderNumber | a1917, AMA-0113, a2099 | - |
| dc.identifier.SubFormID | 45034, 46120, 46592 | - |
| dc.description.fundingSource | RGC | en_US |
| dc.description.fundingSource | Others | en_US |
| dc.description.fundingText | National Natural Science Foundation of China | en_US |
| dc.description.pubStatus | Published | en_US |
| dc.identifier.OPUS | 54195550 | - |
| dc.description.oaCategory | VoR allowed | en_US |
| Appears in Collections: | Journal/Magazine Article | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 21m1429424.pdf | 509.75 kB | Adobe PDF | View/Open |
Page views
110
Last Week
21
21
Last month
Citations as of Nov 10, 2025
Downloads
145
Citations as of Nov 10, 2025
SCOPUSTM
Citations
11
Citations as of Dec 19, 2025
WEB OF SCIENCETM
Citations
11
Citations as of Dec 18, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



